• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of roughing filtration unit for a handwashing wastewater recirculation point-of-use system

    Thumbnail
    View/Open
    Article (947.3Kb)
    Date
    2022
    Author
    Olupot, Peter Wilberforce
    Menya, Emmanuel
    Jjagwe, Joseph
    Wakatuntu, Joel
    Románc, Franz
    Hensel, Oliver
    Metadata
    Show full item record
    Abstract
    A downward roughing filter unit consisting of silica sand as the filter medium was optimized for performance towards removal of turbidity and suspended solids from handwashing wastewater. Design-Expert software was employed to optimize media particle size, filter depth, and flowrate. Linear and quadratic models were found to best fit the responses of turbidity and suspended solids removal, respectively. Particle size and flow rate were the only parameters with significant effects on removal of turbidity and suspended solids. Optimal conditions were found to be media particle size 0.6 mm, filter depth 12 cm, and flow rate 0.3 Lmin 1, corresponding to removal efficiencies of 62 and 67% for turbidity and total suspended solids (TSS), respectively, as predicted by the model. Validation of model at optimal conditions resulted in turbidity and TSS removal of 55 and 53%, respectively. Additionally, removal efficiencies of the roughing filter towards apparent colour, true colour, biochemical oxygen demand (BOD5), and chemical oxygen demand (COD) from handwashing wastewater were 56, 20, 32, and 5%, respectively. Overall, although turbidity of filtered water was .50 NTU, the reduction achieved by roughing filtration is a significant step in enhancing the performance of water treatment processes downstream, including filtration and adsorption by slow sand filters and activated carbon, respectively.
    URI
    https://nru.uncst.go.ug/handle/123456789/7145
    Collections
    • Engineering and Technology [655]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners