• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of lateritic soil stabilized with combination of bone and palm bunch ash for sustainable building applications

    Thumbnail
    View/Open
    Article (11.69Mb)
    Date
    2021
    Author
    Ijeoma Obianyo, Ifeyinwa
    Aboubakar Mahamat, Assia
    Nneka Anosike-Francis, Esther
    Tido Tiwa, Stanislas
    Geng, Yang
    Chibuzor Onyelowe, Kennedy
    Odusanya, Shola
    Peter Onwualu, Azikiwe
    Soboyejo, Alfred B. O.
    Metadata
    Show full item record
    Abstract
    Affordable building for mass housing is the panacea for the housing deficit affecting the increasing population of the African continent especially Nigeria. Harnessing the abundant local building materials present in Africa is key for making adequate houses affordable for the populace. Lateritic soil is an earth-based building material (Jayasinghe & Kamaladasa, 2006) that is among the topmost available local building materials abundantly available in Nigeria and other tropical countries (Oluremi et al., 2012). Earth-based building materials are cheaper than cement and eco-friendly (Alam et al., 2015). Earth-based building materials are cheaper than cement because of the high embodied energy used for cement production. Unlike the cement, earth-based materials production do not release greenhouse gases to the environment and this makes them non-toxic and eco-friendly. The lateritic soil is composed mainly of quartz, iron–magnesium–manganese (amphibole group), and kaolinite (Egenti & Khatib, 2016). Soils having a ratio of silica to sesquioxide [SiO2/(Fe2O3 + Al2 O3)] which are less than 1.33 are classified as laterites whereas the ones between 1.33 and 2.00 are classified as lateritic soil, and those above 2.00 are classified as non-lateritic soils (Nnochiri & Adetayo, 2019). Lateritic soil can easily be recycled and that makes it a sustainable building material (Onakunle et al., 2020). However, due to their lower compressive strength, water absorption, and dimensional stability compared to cementitious materials, lateritic blocks are considered as non-durable building materials. A wide range of chemical stabilization techniques such as the use of cement, lime, agro-waste ash, and plastic waste has been investigated to improve the physical, chemical, and mechanical properties of earth-based materials (Apampa, 2017; Fadele & Ata, 2018; Hamada et al., 2020; Jamil et al., 2013; Moraes et al., 2019; Onyelowe, 2017a, 2017b; Rimal et al., 2019). The properties improved include compressive strength, water absorption, durability, ultrasonic pulse velocity, dry shrinkage, flexural strength, splitting tensile strength and workability.
    URI
    https://doi.org/10.1080/23311916.2021.1921673
    https://nru.uncst.go.ug/handle/123456789/4690
    Collections
    • Engineering and Technology [673]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners