Browsing by Author "Cardona, Carol J."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item African Swine Fever Detection and Transmission Estimates Using Homogeneous Versus Heterogeneous Model Formulation in Stochastic Simulations Within Pig Premises(Research Square, 2022) Ssematimba, Amos; Malladi, Sasidhar; Bonney, Peter J.; Charles, Kaitlyn M. St.; Boyer, Timothy C.; Goldsmith, Timothy; Cardona, Carol J.; Corzo, Cesar A.; Culhane, Marie R.This study aimed to assess the impact on within-herd transmission dynamics of African swine fever (ASF) when the models used to simulate transmission assume there is homogeneous mixing of animals within a barn. Barn-level heterogeneity was explicitly captured using a stochastic, individual pig-based, heterogeneous transmission model that considers three types of infection transmission, 1) within-pen via nose-to-nose contact; 2) between-pen via nose-to-nose contact with pigs in adjacent pens; and 3) both between- and within-pen via distance independent mechanisms (e.g., via fomites). Predictions were compared between the heterogeneous and the homogeneous Gillespie models. Results showed that the predicted mean number of infectious pigs at specific time points differed greatly between the homogeneous and heterogeneous models for scenarios with low levels of between pen contacts via distance independent pathways and the differences between the two model predictions were more pronounced for the slow contact rate scenario. The heterogeneous transmission model results also showed that it may take significantly longer to detect ASF, particularly in large barns when transmission predominantly occurs via nose-to-nose contact between pigs in adjacent pens. The findings emphasize the need for completing preliminary explorations when working with homogeneous mixing models to ascertain their suitability to predict disease outcomes.Item Analysis of geographic location and pathways for influenza A virus infection of commercial upland game bird and conventional poultry farms in the United States of America(BMC veterinary research, 2019) Ssematimba, Amos; Charles, Kaitlyn M. St.; Bonney, Peter J.; Malladi, Sasidhar; Culhane, Marie; Goldsmith, Timothy J.; Halvorson, David A.; Cardona, Carol J.Avian influenza (AI) is an infectious viral disease that affects several species and has zoonotic potential. Due to its associated health and economic repercussions, minimizing AI outbreaks is important. However, most control measures are generic and mostly target pathways important for the conventional poultry farms producing chickens, turkeys, and eggs and may not target other pathways that may be specific to the upland game bird sector. The goal of this study is to provide evidence to support the development of novel strategies for sector-specific AI control by comparing and contrasting practices and potential pathways for spread in upland game bird farms with those for conventional poultry farms in the United States. Farm practices and processes, seasonality of activities, geographic location and inter-farm distance were analyzed across the sectors. All the identified differences were framed and discussed in the context of their associated pathways for virus introduction into the farm and subsequent between-farm spread. Results: Differences stemming from production systems and seasonality, inter-farm distance and farm densities were evident and these could influence both fomite-mediated and local-area spread risks. Upland game bird farms operate under a single, independent owner rather than being contracted with or owned by a company with other farms as is the case with conventional poultry. The seasonal marketing of upland game birds, largely driven by hunting seasons, implies that movements are seasonal and customer-vendor dynamics vary between industry groups. Farm location analysis revealed that, on average, an upland game bird premises was 15.42 km away from the nearest neighboring premises with birds compared to 3.74 km for turkey premises. Compared to turkey premises, the average poultry farm density in a radius of 10 km of an upland game bird premises was less than a half, and turkey premises were 3.8 times (43.5% compared with 11.5%) more likely to fall within a control area during the 2015 Minnesota outbreak. Conclusions: We conclude that the existing differences in the seasonality of production, isolated geographic location and epidemiological seclusion of farms influence AI spread dynamics and therefore disease control measures should be informed by these and other factors to achieve success.Item Avian Influenza in the U.S. Commercial Upland Game Bird Industry: An Analysis of Selected Practices as Potential Exposure Pathways and Surveillance System Data Reporting(Avian diseases, 2018) Charles, Kaitlyn M. St.; Ssematimba, Amos; Malladi, Sasidhar; Bonney, Peter J.; Linskens, Eric; Culhane, Marie; Goldsmith, Timothy J.; Halvorson, David A.; Cardona, Carol J.Producing a smaller yield of higher-value birds compared to conventional poultry production, the U.S. commercial upland game bird industry deals primarily in the sale of live birds for recreational hunting. In this study, our aims were to gain insights into the occurrence of avian influenza (AI) in the U.S. commercial upland game bird industry in comparison to other poultry sectors, to identify the presence of the specific AI risk factors in the practices of raising ducks on site and having connections to live bird markets (LBMs), and to assess how AI surveillance systems may have played a role in the reporting of the presence of exposure pathway–related information. We found that 23 AI epizootics involving upland game bird premises were reported, compared to 485 epizootics in the other poultry industries, and 86% of epizootics involving upland game birds were limited to only one premises. Regarding specific AI risk factors, 70% of upland game bird epizootics involved one of the two examined practices. In assessing the impact of surveillance systems, data framed around the implementation of surveillance systems revealed that the introduction of active surveillance coincided with the more thorough reporting of both the raising of ducks on site and premises having connections to LBMs. Our results suggest the need for more thorough data collection during epizootics and the need to assess additional exposure pathways specific to the commercial raise-for-release upland game bird industry.Item Estimating epidemiological parameters using diagnostic testing data from low pathogenicity avian influenza infected turkey houses(Scientific reports, 2021) Bonney, Peter J.; Malladi, Sasidhar; Ssematimba, Amos; Spackman, Erica; Torchetti, Mia Kim; Culhane, Marie; Cardona, Carol J.Limiting spread of low pathogenicity avian influenza (LPAI) during an outbreak is critical to reduce the negative impact on poultry producers and local economies. Mathematical models of disease transmission can support outbreak control efforts by estimating relevant epidemiological parameters. In this article, diagnostic testing data from each house on a premises infected during a LPAI H5N2 outbreak in the state of Minnesota in the United States in 2018 was used to estimate the time of virus introduction and adequate contact rate, which determines the rate of disease spread. A well-defined most likely time of virus introduction, and upper and lower 95% credibility intervals were estimated for each house. The length of the 95% credibility intervals ranged from 11 to 22 with a mean of 17 days. In some houses the contact rate estimates were also well-defined; however, the estimated upper 95% credibility interval bound for the contact rate was occasionally dependent on the upper bound of the prior distribution. The estimated modes ranged from 0.5 to 6.0 with a mean of 2.8 contacts per day. These estimates can be improved with early detection, increased testing of monitored premises, and combining the results of multiple barns that possess similar production systems.Item Predicting the time to detect moderately virulent African swine fever virus in finisher swine herds using a stochastic disease transmission model(BMC Veterinary Research, 2022) Malladi, Sasidhar; Ssematimba, Amos; Bonney, Peter J.; Charles, Kaitlyn M. St.; Boyer, Timothy; Goldsmith, Timothy; Walz, Emily; Cardona, Carol J.; Culhane, Marie R.African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality. Results: Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days). Conclusion: These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.Item Preparing for a Foreign Animal Disease Outbreak Using a Novel Tabletop Exercise(Prehospital and Disaster Medicine, 2018) Linskens, Eric J.; Neu, Abby E.; Walz, Emily J.; Charles, Kaitlyn M. St.; Culhane, Marie R.; Ssematimba, Amos; Goldsmith, Timothy J.; Halvorson, David A.; Cardona, Carol J.Foreign animal disease (FAD) outbreaks can have devastating impacts, but they occur infrequently in any specific sector anywhere in the United States (US). Training to proactively discuss implementation of control and prevention strategies are beneficial in that they provide stakeholders with the practical information and educational experience they will need to respond effectively to an FAD. Such proactive approaches are the mission of the Secure Food System (SFS; University of Minnesota; St. Paul, Minnesota USA). Methods: The SFS exercises were designed as educational activities based on avian influenza (AI) outbreaks in commercial poultry scenarios. These scenarios were created by subject matter experts and were based on epidemiology reports, risk pathway analyses, local industry practices, and site-specific circumstances. Target audiences of an exercise were the groups involved in FAD control: animal agriculture industry members; animal health regulators; and diagnosticians. Groups of industry participants seated together at tables represented fictional poultry premises and were guided by a moderator to respond to an onfarm situation within a simulated outbreak. The impact of SFS exercises was evaluated through interviews with randomized industry participants and selected table moderators. Descriptive statistics and qualitative analyses were performed on interview feedback. Results: Eleven SFS exercises occurred from December 2016 through October 2017 in multiple regions of the US. Exercises were conducted as company-wide, state-wide, or regional trainings. Nine were based on highly pathogenic avian influenza (HPAI) outbreaks and two focused on outbreaks of co-circulating HPAI and low pathogenicity avian influenza (LPAI). Poultry industry participants interviewed generally found attending an SFS exercise to be useful. The most commonly identified benefits of participation were its value to people without prior outbreak experience and knowledge gained about Continuity of Business (COB)-permitted movement. After completing an exercise, most participants evaluated their preparedness to respond to an outbreak as somewhat to very ready, and more than one-half reported their respective company or farms had discussions or changed actions due to participation. Conclusion: Evaluation feedback suggests the SFS exercises were an effective training method to supplement preparedness efforts for an AI outbreak. The concept of using multi-faceted scenarios and multiple education strategies during a tabletop exercise may be translatable to other emergency preparedness needs.Item Quantifying the effect of swab pool size on the detection of influenza A viruses in broiler chickens and its implications for surveillance(BMC veterinary research, 2018) Ssematimba, Amos; Malladi, Sasidhar; Bonney, Peter J.; Flores-Figueroa, Cristian; Muñoz-Aguayo, Jeannette; Halvorson, David A.; Cardona, Carol J.Timely diagnosis of influenza A virus infections is critical for outbreak control. Due to their rapidity and other logistical advantages, lateral flow immunoassays can support influenza A virus surveillance programs and here, their field performance was proactively assessed. The performance of real-time polymerase chain reaction and two lateral flow immunoassay kits (FluDETECT and VetScan) in detecting low pathogenicity influenza A virus in oropharyngeal swab samples from experimentally inoculated broiler chickens was evaluated and at a flock-level, different testing scenarios were analyzed. Results: For real-time polymerase chain reaction positive individual-swabs, FluDETECT respectively detected 37% and 58% for the H5 and H7 LPAIV compared to 28% and 42% for VetScan. The mean virus titer in H7 samples was higher than for H5 samples. For real-time polymerase chain reaction positive pooled swabs (containing one positive), detections by FluDETECT were significantly higher in the combined 5- and 6-swab samples compared to 11-swab samples. FluDETECT detected 58%, 55.1% and 44.9% for the H7 subtype and 28.3%, 34.0% and 24.6% for the H5 in pools of 5, 6 and 11 respectively. In our testing scenario analysis, at low flock-level LPAIV infection prevalence, testing pools of 11 detected slightly more infections while at higher prevalence, testing pools of 5 or 6 performed better. For highly pathogenic avian influenza virus, testing pools of 11 (versus 5 or 6) detected up to 5% more infections under the assumption of similar sensitivity across pools and detected less by 3% when its sensitivity was assumed to be lower. Conclusions: Much as pooling a bigger number of swab samples increases the chances of having a positive swab included in the sample to be tested, this study’s outcomes indicate that this practice may actually reduce the chances of detecting the virus since it may result into lowering the virus titer of the pooled sample. Further analysis on whether having more than one positive swab in a pooled sample would result in increased sensitivity for low pathogenicity avian influenza virus is needed.Item Simulated Flock-Level Shedding Characteristics of Turkeys in Ten Thousand Bird Houses Infected with H7 Low Pathogenicity Avian Influenza Virus Strains(2021) Bonney, Peter J.; Malladi, Sasidhar; Ssematimba, Amos; Charles, Kaitlyn M. St.; Walz, Emily; Culhane, Marie R.; Halvorson, David A.; Cardona, Carol J.pathogenicity avian influenza virus (LPAIV) over time can help inform the type and timing of activities performed in response to a confirmed LPAIV-positive premises. To this end, we developed a mathematical model which allows us to estimate viral shedding by 10,000 turkey toms raised in commercial turkey production in the United States, and infected by H7 LPAIV strains. We simulated the amount of virus shed orally and from the cloaca over time, as well as the amount of virus in manure. In addition, we simulated the threshold cycle value (Ct) of pooled oropharyngeal swabs from birds in the infected flock tested by real-time reverse transcription polymerase chain reaction. The simulation model predicted that little to no shedding would occur once the highest threshold of seroconversion was reached. Substantial amounts of virus in manure (median 1.5 108 and 5.8 109; 50% egg infectious dose) were predicted at the peak. Lastly, the model results suggested that higher Ct values, indicating less viral shedding, are more likely to be observed later in the infection process as the flock approaches recovery.Item Spatial transmission of H5N2 highly pathogenic avian influenza between Minnesota poultry premises during the 2015 outbreak(PLoS ONE, 2018) Bonney, Peter J.; Malladi, Sasidhar; Jan Boender, Gert; Weaver, J. Todd; Ssematimba, Amos; Halvorson, David A.; Cardona, Carol J.The spatial spread of highly pathogenic avian influenza (HPAI) H5N2 during the 2015 outbreak in the U.S. state of Minnesota was analyzed through the estimation of a spatial transmission kernel, which quantifies the infection hazard an infectious premises poses to an uninfected premises some given distance away. Parameters were estimated using a maximum likelihood method for the entire outbreak as well as for two phases defined by the daily number of newly detected HPAI-positive premises. The results indicate both a strong dependence of the likelihood of transmission on distance and a significant distance-independent component of outbreak spread for the overall outbreak. The results further suggest that HPAI spread differed during the later phase of the outbreak. The estimated spatial transmission kernel was used to compare the Minnesota outbreak with previous HPAI outbreaks in the Netherlands and Italy to contextualize the Minnesota transmission kernel results and make additional inferences about HPAI transmission during the Minnesota outbreak. Lastly, the spatial transmission kernel was used to identify high risk areas for HPAI spread in Minnesota. Risk maps were also used to evaluate the potential impact of an early marketing strategy implemented by poultry producers in a county in Minnesota during the outbreak, with results providing evidence that the strategy was successful in reducing the potential for HPAI spread.