Conversion of native vegetation in protected areas fuels co2-equivalent losses in Uganda

dc.contributor.authorOlupot, Giregon
dc.contributor.authorOtukei, John R.
dc.contributor.authorMuwanika, Vincent B.
dc.contributor.authorEsaete, Josephine
dc.contributor.authorTabuti, John R.S.
dc.date.accessioned2022-06-10T21:47:06Z
dc.date.available2022-06-10T21:47:06Z
dc.date.issued2017
dc.description.abstractProtected areas (PAs) play many unique yet, irreplaceable ecosystem functions, most importantly, mitigation of CO2 emissions. However, the influence of land use and land cover (LULC) change on the sequestration of carbon in these PAs and related ecosystems is strikingly limited. This chapter consolidates the scanty data on the impact of LULC change on biomass and soil carbon stocks for evaluation of the impact of such LULC changes on CO2-equivalent (CO2-e) fluxes in the PAs of Uganda. The gist of the study was to test the hypothesis that any change in LULC or shift away from the pristine LULC type (PAs in our case), would lead to a net CO2-e loss. The results indicate that deliberate revegetation of an old (39–63 years) pine plantation segment of Kibale National Park with indigenous tree species resulted in a net 56.8% increase in CO2-e sequestration (18.10 Mg CO2-e ha-1) in 10 years. In Mt Elgon National Park (MENP) with mature native forest (>80 years), over 87% of the CO2-e was sequestered by mature trees in the intact tropical high forest (ITHF). A change in LC from an ITHF to a degraded tropical high forest (DTHF) to grassland has resulted in net losses of 91.5% and 93.6% of the CO2-e sequestered by the ITHF, respectively. In Bwindi Impenetrable National Park, a shift from closed forest canopy (CFC) to open forest canopy (OFC) translated into a net loss of over 76.8% of CO2-e. There was a significant effect of LULC change on the depth distribution of soil carbon stocks in KNP. Highest soil carbon stocks (19.0±0.86 Mg C ha-1) were observed under maize whereas the smallest (16.4±1.54 Mg C ha-1) were under ITHF. However, about 70% of the soil carbon stocks under the forest covers (11.2 Mg C ha-1) were accumulated deeper than 0–0.15 m compared with only about 47% (about 8.9 Mg C ha-1) under maize. The 2.3 Mg C ha-1 in the 0.15–0.6 m layer of soil under ITHF and restored forest in excess of what we observed under maize, highlights the importance of the forests in sequestering carbon in the area and potentially in related ecosystems elsewhere in Uganda. Our synthesis indicates that change in LULC or shift away from native LULC type leads to a net loss of CO2-e. Therefore, conservation of such PAs in Uganda is not an option but mandatory for climate change mitigation.en_US
dc.identifier.citationOlupot, G., Otukei, J. R., Muwanika, V. B., Esaete, J., & Tabuti, J. R. (2017). Conversion of native vegetation in protected areas fuels CO2-equivalent losses in Uganda. Protected Areas: Policies, Management and Future Directions New York: Nova Publishers, 179-202.en_US
dc.identifier.isbn978-1-53610-664-0
dc.identifier.urihttps://nru.uncst.go.ug/handle/123456789/3878
dc.language.isoenen_US
dc.publisherNova Publishersen_US
dc.subjectCarbon sequestrationen_US
dc.subjectClimate change mitigationen_US
dc.subjectReforestationen_US
dc.subjectLand useen_US
dc.subjectLand coveren_US
dc.titleConversion of native vegetation in protected areas fuels co2-equivalent losses in Ugandaen_US
dc.typeBook chapteren_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CONVERSION OF NATIVE VEGETATION.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
Book Chapter
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: