Conversion of native vegetation in protected areas fuels co2-equivalent losses in Uganda
Loading...
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Nova Publishers
Abstract
Protected areas (PAs) play many unique yet, irreplaceable ecosystem
functions, most importantly, mitigation of CO2 emissions. However, the influence of land use and land cover (LULC) change on the sequestration
of carbon in these PAs and related ecosystems is strikingly limited. This
chapter consolidates the scanty data on the impact of LULC change on
biomass and soil carbon stocks for evaluation of the impact of such
LULC changes on CO2-equivalent (CO2-e) fluxes in the PAs of Uganda.
The gist of the study was to test the hypothesis that any change in LULC
or shift away from the pristine LULC type (PAs in our case), would lead
to a net CO2-e loss. The results indicate that deliberate revegetation of an
old (39–63 years) pine plantation segment of Kibale National Park with
indigenous tree species resulted in a net 56.8% increase in CO2-e
sequestration (18.10 Mg CO2-e ha-1) in 10 years. In Mt Elgon National
Park (MENP) with mature native forest (>80 years), over 87% of the
CO2-e was sequestered by mature trees in the intact tropical high forest
(ITHF). A change in LC from an ITHF to a degraded tropical high forest
(DTHF) to grassland has resulted in net losses of 91.5% and 93.6% of the
CO2-e sequestered by the ITHF, respectively. In Bwindi Impenetrable
National Park, a shift from closed forest canopy (CFC) to open forest
canopy (OFC) translated into a net loss of over 76.8% of CO2-e. There
was a significant effect of LULC change on the depth distribution of soil
carbon stocks in KNP. Highest soil carbon stocks (19.0±0.86 Mg C ha-1)
were observed under maize whereas the smallest (16.4±1.54 Mg C ha-1)
were under ITHF. However, about 70% of the soil carbon stocks under
the forest covers (11.2 Mg C ha-1) were accumulated deeper than 0–0.15
m compared with only about 47% (about 8.9 Mg C ha-1) under maize.
The 2.3 Mg C ha-1 in the 0.15–0.6 m layer of soil under ITHF and
restored forest in excess of what we observed under maize, highlights the
importance of the forests in sequestering carbon in the area and
potentially in related ecosystems elsewhere in Uganda. Our synthesis
indicates that change in LULC or shift away from native LULC type
leads to a net loss of CO2-e. Therefore, conservation of such PAs in
Uganda is not an option but mandatory for climate change mitigation.
Description
Keywords
Carbon sequestration, Climate change mitigation, Reforestation, Land use, Land cover
Citation
Olupot, G., Otukei, J. R., Muwanika, V. B., Esaete, J., & Tabuti, J. R. (2017). Conversion of native vegetation in protected areas fuels CO2-equivalent losses in Uganda. Protected Areas: Policies, Management and Future Directions New York: Nova Publishers, 179-202.