• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biological Treatment of Meat Processing Wastewater Using Lab-Scale Anaerobic-Aerobic/Anoxic Sequencing Batch Reactors Operated in Series

    Thumbnail
    View/Open
    Article (791.7Kb)
    Date
    2016
    Author
    Nzioka Mutua, David
    Mwaniki Njagi, Eliud N.
    Orinda, George
    Obondi, Geoffry
    Kansiime, Frank
    Kyambadde, Joseph
    Omara, John
    Odong, Robinson
    Butungi, Hellen
    Metadata
    Show full item record
    Abstract
    In the eastern Africa sub-region, many industries discharge untreated effluents to nearby water resources, thereby polluting the environment. This is because the technologies applicable for wastewater treatment are expensive for these small-medium sized companies with low profit margins. Slaughterhouses belong to this category of industrial setup. The objective of this study was to investigate treatment of meat processing wastewater using anaerobic– aerobic/anoxic Sequencing Batch Reactors (SBRs) operated in series. Reactors were operated for one year using meat processing wastewater. Hydraulic retention time was 2 days for the anaerobic SBR, and 1 day for the aerobic/ anoxic SBR while the organic loading was 12.8 kg COD/m3/day. In the anaerobic SBR, removal efficiencies for total and soluble chemical oxygen demand (TCOD and SCOD), total suspended solids (TSS) and turbidity were 79, 76, 79, and 70%, respectively, with effluent mean concentrations of 3554 ± 58 mg/L, 762 ± 3 mg/L, 2307 ± 21, and 2800 ± 9 FAU. Conductivity, ammonia-nitrogen, ortho-phosphates and total phosphorus concentrations increased by 38, 80, 81 and 71%. Pollutant removal efficiencies in the aerobic/anoxic SBR were 98, 96, 97, 89, 74, 97, 91, 90, and 86% for TCOD, SCOD, BOD, TSS, turbidity, ammonium nitrogen (NH4 +–N), total nitrogen (TN), orthophosphorus (o-PO4 3-–P), and total phosphorus (TP), respectively. Except TKN (35 ± 4 mg/L) and o-PO4 3-–P (8 ± 1 mg/L), all other parameters in the aerobically treated effluent met national discharge standards. Thus, abattoir effluent can be treated using anaerobic–aerobic/anoxic SBR system.
    URI
    https://nru.uncst.go.ug/handle/123456789/5855
    Collections
    • Engineering and Technology [836]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners