• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Needle Segmentation For Real-time Guidance of Minimally Invasive Procedures Using Handheld 2D Ultrasound Systems

    Thumbnail
    View/Open
    Article (4.020Mb)
    Date
    2022
    Author
    Okwija Mugume, Paul
    Nabacwa, Joanitta
    Imanirakiza, Sylvia
    Bagetuuma Kimbowa, Alvin
    Metadata
    Show full item record
    Abstract
    Accurate needle placement is crucial during minimally invasive procedures such as biopsies, regional anesthesia, and fluid aspiration. 2D Ultrasound is widely used for needle guidance during such procedures, however, it has a limited fieldof- view and poor needle visibility for steep insertion angles. In this work, we propose a novel machine learning (ML)- based method for real-time needle segmentation in handheld 2D ultrasound systems. The proposed method involves a fast and simple annotation technique allowing for the labeling of large datasets. It then utilizes the U-Net architecture which is modified to allow for easy integration into a handheld ultrasound system. Two datasets were used in this work, one consisting of B-mode ultrasound videos obtained from human tissue and the other consisting of videos and frames from chicken, porcine and bovine tissue. The model is trained on 1262 frames and evaluated on 209 frames. This approach achieves an Intersection Over Union (IoU) of 0.75 and a dice coefficient of 0.851 on frames obtained from human tissue. The model is integrated into the processing pipeline of a portable ultrasound system and achieves an overall processing speed of about 8 frames per second. The proposed approach outperforms state-of-the-art methods for needle segmentation while achieving real-time integration. This work is a step forward towards real-time needle guidance using machine learning-based algorithms in handheld ultrasound systems.
    URI
    https://doi.org/10.36227/techrxiv.21234107.v1
    https://nru.uncst.go.ug/handle/123456789/5583
    Collections
    • Engineering and Technology [657]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners