• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrocatalytic 5-(hydroxymethyl)furfural Oxidation using High Surface Area Nickel Boride

    Thumbnail
    View/Open
    Electrocatalytic 5-(hydroxymethyl)furfural oxidation using high surface area nickel boride (1.014Mb)
    Date
    2018
    Author
    Barwe, Stefan
    Weidner, Jonas
    Moralesa, Dulce M.
    Schuhmann, Wolfgang
    Metadata
    Show full item record
    Abstract
    The electrochemical oxidation of the biorefinery product 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA), an important platform chemical for the polymer industry, is receiving increasing interest. FDCA-based polymers such as polyethylene 2,5-furandicarboxylate (PEF) are sustainable candidates for replacing polyethylene terephthalate (PET). Herein, we report the highly efficient electrocatalytic oxidation of HMF to FDCA, using Ni foam modified with high-surface-area nickel boride (NixB) as the electrode. Constant potential electrolysis in combination with HPLC revealed a high faradaic efficiency of close to 100 % towards the production of FDCA with a yield of 98.5 %. Operando electrochemistry coupled to ATR-IR spectroscopy indicated that HMF is oxidized preferentially via 5-hydroxymethyl-2-furancarboxylic acid rather than via 2,5-diformylfuran, which is in agreement with HPLC results. This study not only reports a low-cost active electrocatalyst material for the electrochemical oxidation of HMF to FDCA, but additionally provides insight into the reaction pathway.
    URI
    https://nru.uncst.go.ug/handle/123456789/5267
    Collections
    • Engineering and Technology [677]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners