• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of Polyethylene and Polypropylene Beads towards Drill Cuttings Transportation in Horizontal Wellbore

    Thumbnail
    View/Open
    Performance of polyethylene and polypropylene beads towards drill cuttings transportation in horizontal wellbore (1.900Mb)
    Date
    2018
    Author
    Hakim, Hadyan
    Katende, Allan
    Sagala, Farad
    Ismail, Issham
    Nsamba, Hussein
    Metadata
    Show full item record
    Abstract
    Drilled cuttings removal is critical in drilling operations, especially in horizontal wells. These cuttings are postulated to be among the possible causes of many costly complications, such as mechanical pipe sticking, bore hole instability, drag and torque. This study proposes a new approach that uses polymer beads as a mud additive to improve cutting transportation. In this study, the effect of the concentration of polyethylene (PE) and polypropylene (PP) polymer beads on cuttings transport efficiency (CTE) in water-based mud in a horizontal wellbore was investigated. Experiments were conducted in a lab-scale flow loop equipped with a 13-ft (3.96 m) test section consisting of a concentric annulus acrylic outer casing (2 in. ID) and a static inner PVC drill string (0.79 in. OD). A total of 150 tests were conducted using 10 ppg water based mud (WBM) with 1%–5% by vol. Concentrations of polymer beads (PE and PP) were added at a range of 8–9.5 cp. Six different sizes of drilled cuttings ranging from 0.5 to 4.0 mm were used as samples to determine the CTE at a constant 0.69 m/s average annular fluid velocity. The results revealed that CTE increased with the increase of polymer bead concentrations and that PP is better compared to PE overall due to its low density. The highest CTE was recorded at a 5% concentration of water-based mud polypropylene (WBMPP), which is approximately 96% for cutting sizes of 0.50mm–0.99 mm.
    URI
    https://nru.uncst.go.ug/handle/123456789/5069
    Collections
    • Engineering and Technology [659]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners