• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scheffe optimization of swelling, California bearing ratio, compressive strength, and durability potentials of quarry dust stabilized soft clay soil

    Thumbnail
    View/Open
    Article (551.7Kb)
    Date
    2019
    Author
    Onyelowe, Kennedy
    Alaneme, George
    Igboayaka, Clifford
    Orji, Francis
    Ugwuanyi, Henry
    Bui Van, Duc
    Nguyen Van, Manh
    Metadata
    Show full item record
    Abstract
    Scheffe’s second degree polynomial was used to formulate models for predicting the swelling potential, California bearing ratio, unconfined compressive strength and loss of strength on immersion durability of quarry dust treated soil. These models could predict the swelling potential, California bearing ratio, unconfined compressive strength and loss of strength on immersion durability of treated soil if the mix ratios are known and vice versa. The response predicted by the models are in good agreement with the corresponding experimentally observed results. The result of these tests shows the feasibility of using quarry dust in soil stabilization. The student t-test and the analysis of variance (ANOVA) test were used to check the adequacy of the models, and the models were found to be adequate at 95% confidence level. With the optimized equations, the properties’ design, behaviour, and performance of treated soft clay soil as a pavement subgrade material will be appropriated and monitored. This will be for any possible volume changes, shear failures, strength failures and durability failures when the material used as a hydraulically bound material is in contact with moisture beyond its optimum and subjected to dynamic load beyond its design value.
    URI
    https://doi.org/10.1016/j.mset.2018.10.005
    https://nru.uncst.go.ug/handle/123456789/4710
    Collections
    • Engineering and Technology [684]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners