• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Objective Optimization of Sustainable Concrete Containing Fly Ash Based on Environmental and Mechanical Considerations

    Thumbnail
    View/Open
    Article (5.326Mb)
    Date
    2022
    Author
    Onyelowe, Kennedy C.
    Kontoni, Denise-Penelope N.
    Ebid, Ahmed M.
    Dabbaghi, Farshad
    Soleymani, Atefeh
    Jahangir, Hashem
    Nehdi, Moncef L.
    Metadata
    Show full item record
    Abstract
    Infrastructure design, construction and development experts are making frantic efforts to overcome the overbearing effects of greenhouse gas emissions resulting from the continued dependence on the utilization of conventional cement as a construction material on our planet. The amount of CO2 emitted during cement production, transportation to construction sites, and handling during construction activities to produce concrete is alarming. The present research work is focused on proposing intelligent models for fly ash (FA)-based concrete comprising cement, fine and coarse aggregates (FAg and CAg), FA, and water as mix constituents based on environmental impact (P) considerations in an attempt to foster healthier and greener concrete production and aid the environment. FA as a construction material is discharged as a waste material from power plants in large amounts across the world. Its utilization as a supplementary cement ensures a sustainable waste management mechanism and is beneficial for the environment too; hence, this research work is a multi-objective exercise. Intelligent models are proposed for multiple concrete mixes utilizing FA as a replacement for cement to predict 28-day concrete compressive strength and life cycle assessment (LCA) for cement with FA. The data collected show that the concrete mixes with a higher amount of FA had a lesser impact on the environment, while the environmental impact was higher for those mixes with a higher amount of cement. The models which utilized the learning abilities of ANN (-BP, -GRG, and -GA), GP and EPR showed great speed and robustness with R2 performance indices (SSE) of 0.986 (5.1), 0.983 (5.8), 0.974 (7.0), 0.78 (19.1), and 0.957 (10.1) for Fc, respectively, and 0.994 (2.2), 0.999 (0.8), 0.999 (1.0), 0.999 (0.8), and 1.00 (0.4) for P, respectively. Overall, this shows that ANN-BP outclassed the rest in performance in predicting Fc, while EPR outclassed the others in predicting P. Relative importance analyses conducted on the constituent materials showed that FA had relatively good importance in the concrete mixes. However, closed-form model equations are proposed to optimize the amount of FA and cement that will provide the needed strength levels without jeopardizing the health of the environment.
    URI
    https://doi.org/ 10.3390/buildings12070948
    https://nru.uncst.go.ug/handle/123456789/4688
    Collections
    • Engineering and Technology [676]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners