• Login
    View Item 
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    •   NRU
    • Journal Publications
    • Engineering and Technology
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia

    Thumbnail
    View/Open
    Article (1011.Kb)
    Date
    2015
    Author
    Makbul, A.M. Ramli
    Ayong, Hiendro
    Khaled, Sedraoui
    Ssennoga, Twaha
    Metadata
    Show full item record
    Abstract
    Resource optimization is a major factor in the assessment of the effectiveness of renewable energy systems. Various methods have been utilized by different researchers in planning and sizing the gridconnected PV systems. This paper analyzes the optimal photovoltaic (PV) array and inverter sizes for a grid-connected PV system. Unmet load, excess electricity, fraction of renewable electricity, net present cost (NPC) and carbon dioxide (CO2) emissions percentage are considered in order to obtain optimal sizing of the grid-connected PV system. An optimum result, with unmet load and excess electricity of 0%, for serving electricity in Makkah, Saudi Arabia is achieved with the PV inverter size ratio of R ¼ 1 with minimized CO2 emissions. However, inverter size can be downsized to 68% of the PV nominal power to reduce the inverter cost, and hence decrease the total NPC of the system.
    URI
    http://dx.doi.org/10.1016/j.renene.2014.10.028
    https://nru.uncst.go.ug/handle/123456789/3493
    Collections
    • Engineering and Technology [656]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners