Natural Sciences
Permanent URI for this collection
Browse
Browsing Natural Sciences by Author "Abera, Wuletawu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ecosystem Service Valuation along Landscape Transformation in Central Ethiopia(Land, 2022) Assefa Biratu, Abera; Bedadi, Bobe; Gebreyohannis Gebrehiwot, Solomon; Melesse, Assefa M.; Hordofa Nebi, Tilahun; Abera, WuletawuLand degradation and discontinuation of ecosystem services (ES) are a common phenomenon that causes socio-economic and environmental problems in Ethiopia. However, a dearth of information is known about how ES are changing from the past to the future with regard to land use land cover (LULC) changes. This study aimed at estimating the values of ES based on the past and future LULC changes in central Ethiopia. Maximum likelihood classifier and cellular automataartificial neuron network (CA-ANN) models that integrate the module for land use change evaluation (MOLUSE) were used to classify and predict LULC. The CA-ANN model learning and validation was employed to predict LULC of 2031 and 2051. Following LULC change detection and prediction, the total ES values were estimated using the benefit transfer method. Results revealed that forests, wetlands, grazing lands, shrub-bush-woodlands, and water bodies were reduced by 9755 ha (37%), 4092 ha (38.4%), 21,263 ha (81%), 63,161 ha (25.7%), and 905 ha (1%), respectively, between 1986 and 2021. Similarly, forests, wetlands, grazing lands, shrub-bush lands, and water bodies will experience a decline of 1.5%, 0.5%, 2.6%, 19.6%, and 0.1%, respectively. Meanwhile, cultivated lands, bare-lands, and built-up areas will experience an increase between 1986 and 2051. The estimated total ES values were reduced by US$58.3 and 85.4 million in the period 1986–2021 and 1986–2051. Food production and biological control value increased while 15 other ES decreased throughout the study periods. Proper land use policy with strategic actions, including enforcement laws for natural ecosystems protection, afforestation, ecosystems restoration, and conservation practices, are recommended to be undertaken to enhance multiple ES provision.Item Impact of Landscape Management Scenarios on Ecosystem Service Values in Central Ethiopia(Land, 2022) Assefa Biratu, Abera; Bedadi, Bobe; Gebreyohannis Gebrehiwot, Solomon; Melesse, Assefa M.; Hordofa Nebi, Tilahun; Abera, Wuletawu; Tamene, Lulseged; Egeru, AnthonyThis study aimed at modeling scenarios of future land use and land cover (LULC) change and estimating ecosystem service (ES) values for the year 2051 compared to 2021 in Central Ethiopia. The future LULC changes for the year 2051 were simulated for four scenarios, namely Businessas- Usual (BAU), Rapid Agricultural Expansion (RAE), Ecosystems Protection and Agricultural Development (EPAD) and Landscape Ecosystems Restoration and Conservation (LERC). The four LULC change scenarios were simulated based on anticipated assumptions that were derived from existing spatial policies, a consultation workshop report on scenarios of agricultural development in Ethiopia, suitability analysis, population growth analysis and expert knowledge of the study area characteristics. We used a Multi-Layer Perceptron–Artificial Neuron Network (MLP–ANN) modelbased projected LULC for the BAU scenario and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to generate RAE, EPAD and LERC scenarios in the study landscape. The benefit transfer method was used to estimate the total ES values and for trade-off analysis. The result showed that LULC changes in the study area varied across simulated scenarios compared to the base year 2021. Under the BAU and RAE scenarios, cultivated land increased by 146,548 ha (22%) and 193,965 ha (29%), whereas forest, water body, wetland and shrub-bush land were reduced. However, forest cover increased by 31,725 ha and 100,080 ha but bare land was reduced by 8466 ha (21%) and 10,379 ha (25%) under the EPAD and LERC scenarios. The forest cover annual rate of change was 3.2% and 6% under the EPAD and LERC scenarios. As a result, the total ES value increased by USD 24.5 and 78.5 million under the EPAD and LERC scenarios for the year 2051, whereas the total ES value was reduced under the BAU and RAE scenarios by USD 27.1 and 73.2 million. The trade-offs among ecosystem services were significantly synergized under the LERC scenario compared to RAE. Therefore, EPAD and LERC could be used as a reference for sustainable landscape planning and management. Landscape ecosystems restoration integrated with a sustainable agricultural intensification approach would enable us to ensure the sustainability of both agricultural production and ecosystem service synergies without negatively affecting the natural environment.