Extended GT-STAF Information Indices based on Markov Approximation Models
dc.contributor.author | Barigye, Stephen J. | |
dc.contributor.author | Marrero-Ponce, Yovani | |
dc.contributor.author | Alfonso-Reguera, Vitalio | |
dc.contributor.author | Pérez-Giménez, Facundo | |
dc.date.accessioned | 2023-02-09T16:37:33Z | |
dc.date.available | 2023-02-09T16:37:33Z | |
dc.date.issued | 2013 | |
dc.description.abstract | A series of novel information theory-based molecular parameters derived from the insight of a molecular structure as a chemical communication system were recently presented and usefully employed in QSAR/QSPRs (J. Comp. Chem, 2013, 34, 259; SAR and QSAR in Environ. Res. 2013, 24). This approach permitted the application of Shannon’s source and channel coding entropic measures to a chemical information source comprised of molecular ‘fragments’, using the zero-order Markov approximation model (atom-based approach). This report covers the theoretical aspects of the extensions of this approach to higher-order models, introducing the first, second and generalized-order Markov approximation models. | en_US |
dc.identifier.citation | Barigye, S. J., Marrero-Ponce, Y., Alfonso-Reguera, V., & Pérez-Giménez, F. (2013). Extended GT-STAF information indices based on Markov approximation models. Chemical Physics Letters, 570, 147-152.https://doi.org/10.1016/j.cplett.2013.03.057 | en_US |
dc.identifier.issn | 0009-2614 | |
dc.identifier.uri | https://nru.uncst.go.ug/handle/123456789/7696 | |
dc.language.iso | en | en_US |
dc.publisher | Chemical Physics Letters | en_US |
dc.subject | GT-STAF | en_US |
dc.subject | Markov | en_US |
dc.subject | QSAR/QSPRs | en_US |
dc.title | Extended GT-STAF Information Indices based on Markov Approximation Models | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Extended GT-STAF information indices based on Markov approximation models.pdf
- Size:
- 643.82 KB
- Format:
- Adobe Portable Document Format
- Description:
- Extended GT-STAF information indices based on Markov approximation models
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: