Solution of large-scale weighted least-squares problems

dc.contributor.authorBaryamureeba, Venansius
dc.date.accessioned2022-07-18T10:45:21Z
dc.date.available2022-07-18T10:45:21Z
dc.date.issued2002
dc.description.abstractA sequence of least-squares problems of the form miny G1=2(ATy−h) 2, where G is an n×n positive definite diagonal weight matrix, and A an m×n (m6n) sparse matrix with some dense columns; has many applications in linear programming, electrical networks, elliptic boundary value problems, and structural analysis. We suggest low-rank correction preconditioners for such problems, and a mixed solver (a combination of a direct solver and an iterative solver). The numerical results show that our technique for selecting the low-rank correction matrix is very effective. Copyright ? 2002 John Wiley & Sons, Ltd.en_US
dc.identifier.citationBaryamureeba, V. (2002). Solution of large‐scale weighted least‐squares problems. Numerical linear algebra with applications , 9 (2), 93-106. DOI: 10.1002/nla.232en_US
dc.identifier.other10.1002/nla.232
dc.identifier.urihttps://nru.uncst.go.ug/handle/123456789/4221
dc.language.isoenen_US
dc.publisherNumerical linear algebra with applicationsen_US
dc.subjectLeast squaresen_US
dc.subjectConjugate gradientsen_US
dc.subjectPreconditioneren_US
dc.subjectDense columnsen_US
dc.titleSolution of large-scale weighted least-squares problemsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Solution of large-scale weighted least-squares problems.pdf
Size:
467.42 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: