Transforming corn stover to useful transport fuel blends in resource-limited settings

dc.contributor.authorMunu, Nicholas
dc.contributor.authorBanadda, Noble
dc.contributor.authorKiggundu, Nicholas
dc.contributor.authorZziwa, Ahamada
dc.contributor.authorKabenge, Isa
dc.contributor.authorSeay, Jeffrey
dc.contributor.authorKambugu, Robert
dc.contributor.authorWanyama, Joshua
dc.contributor.authorSchmidt, Albrecht
dc.date.accessioned2022-11-16T20:34:05Z
dc.date.available2022-11-16T20:34:05Z
dc.date.issued2021
dc.description.abstractDevelopment of local technologies is crucial to the sustainable energy agenda in resource-limited countries and the world. Strengthening local green technologies and promoting local utilization will reduce carbon emissions that could be generated during transportation and delivery of green products from one country to another. In this paper we developed bio-oil/diesel blends using a low-tech pyrolysis system designed for smallholder farmers in developing countries and tested their appropriateness for diesel engines using standard ASTM methods. Corn stover retrieved from smallholder farmers in Gayaza, Uganda were pyrolyzed in a batch rocket stove reactor at 350 ◦C and liquid bio-oil harvested. Bio-oil chemical composition was analyzed by Gas Chromatography equipped with Flame Ionization Detector (GC-FID). Bio-oil/diesel emulsions in ternary concentrations 5%, 10% and 20% bio-oil weight were developed with 1% concentration of sorbitan monolaurate as an emulsifier. The bio-oil/diesel emulsions and distillates had property ranges: specific gravities at 15 ◦C 827.4–830.7 kg m−3, specific gravities at 20 ◦C 823.9–827.2 kg m−3, kinematic viscosities at 40 ◦C 3.01–3.22 mm2/s, initial boiling points 140–160 ◦C, final boiling points 354–368 ◦C, and calculated cetane indexes 56.80– 57.63. These properties of the bio-oil/diesel blends and their distillates compare well with standard transportation diesel fuel. The emulsion distillates meet the standard requirements for automotive diesel in East Africa.en_US
dc.identifier.citationMunu, N., Banadda, N., Kiggundu, N., Zziwa, A., Kabenge, I., Seay, J., ... & Schmidt, A. (2021). Transforming corn stover to useful transport fuel blends in resource-limited settings. Energy Reports, 7, 1256-1266. https://doi.org/10.1016/j.egyr.2021.02.038en_US
dc.identifier.otherhttps://doi.org/10.1016/j.egyr.2021.02.038
dc.identifier.urihttps://nru.uncst.go.ug/handle/123456789/5307
dc.language.isoenen_US
dc.publisherEnergy Reportsen_US
dc.subjectBio-oilen_US
dc.subjectCorn stoveren_US
dc.subjectDieselen_US
dc.subjectEmulsionen_US
dc.subjectFuelen_US
dc.titleTransforming corn stover to useful transport fuel blends in resource-limited settingsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Transforming corn stover to useful transport fuel blends i.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections