Coloured Chemical Image-based Models for the Prediction of Soil Sorption of Herbicides

dc.date.accessioned2023-02-09T17:37:23Z
dc.date.available2023-02-09T17:37:23Z
dc.date.issued2015
dc.description.abstractHerbicides with high soil sorption profiles constitute important organic pollutants leading to detrimental environmental effects, particularly due to prolonged use. Soil sorption is described in terms of log KOC, the logarithm of the soil/water partition coefficient normalized to organic carbon. This work reports the use of molecular drawings to generate molecular descriptors, which are posteriorly correlated with the log KOC values of a series of herbicides. These images are two-dimensional projections of chemical structures, with their atom sizes drawn to be proportional to the corresponding van der Waals radii and each chemical element assigned a different colour to distinguish atom types. The progressive changes in the molecular structures explain the variance in the corresponding soil sorption. Unlike previous QSPR studies on soil sorption, the series of herbicides employed in the present study included different classes of compounds (carboxylic acids, ethers, phenols, amines, amides and carbamates) guaranteeing a diverse chemical structural space. The obtained Partial Least Squares (PLS) and Multiple Linear Regression (MLR) based models for the log KOC values were found to be robust and with high predictive power. Mechanistic interpretation of the effect of different substituents (bonded to the common structural moiety in the herbicides series) on the log KOC values was performed yielding interesting results. These findings allow greater understanding of the chemical groups (or structural characteristics) responsible for high/low soil sorption, which in turn provides key leads for structural optimization to yield environmentally friendly and equally effective herbicides.en_US
dc.identifier.citationFreitas, M. R., Barigye, S. J., & Freitas, M. P. (2015). Coloured chemical image-based models for the prediction of soil sorption of herbicides. RSC advances, 5(10), 7547-7553.DOI: 10.1039/c4ra12070aen_US
dc.identifier.urihttps://nru.uncst.go.ug/handle/123456789/7712
dc.language.isoenen_US
dc.publisherRSC advancesen_US
dc.subjectHerbicidesen_US
dc.subjectsoil sorptionen_US
dc.subjectatom typesen_US
dc.titleColoured Chemical Image-based Models for the Prediction of Soil Sorption of Herbicidesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Coloured chemical image-based models for the prediction of soil sorption of herbicides.pdf
Size:
530.49 KB
Format:
Adobe Portable Document Format
Description:
Coloured chemical image-based models for the prediction of soil sorption of herbicides
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: