Neuromorphic computing based on silicon photonics
dc.contributor.author | Katumba, Andrew | |
dc.contributor.author | Freiberger, Matthias | |
dc.contributor.author | Laporte, Floris | |
dc.contributor.author | Lugnan, Alessio | |
dc.contributor.author | Sackesyn, Stijn | |
dc.contributor.author | Ma, Chonghuai | |
dc.contributor.author | Dambre, Joni | |
dc.contributor.author | Bienstman, Peter | |
dc.date.accessioned | 2022-11-30T20:28:36Z | |
dc.date.available | 2022-11-30T20:28:36Z | |
dc.date.issued | 2018 | |
dc.description.abstract | We present our latest progress using new neuromorphic paradigms for optical information processing in silicon photonics. We show how passive reservoir computing chips can be used to perform a variety of tasks (bit level tasks, nonlinear dispersion compensation, ...) at high speeds and low power consumption. In addition, we present a spatial analog of reservoir computing based on pillar scatterers and a cavity, that can be used to speed up classification of biological cells. | en_US |
dc.identifier.citation | Katumba, A., Freiberger, M., Laporte, F., Lugnan, A., Sackesyn, S., Ma, C., ... & Bienstman, P. (2018). Neuromorphic computing based on silicon photonics and reservoir computing. IEEE Journal of Selected Topics in Quantum Electronics, 24(6), 1-10. | en_US |
dc.identifier.uri | https://ieeexplore.ieee.org/abstract/document/8331848/ | |
dc.identifier.uri | https://nru.uncst.go.ug/handle/123456789/5584 | |
dc.language.iso | en | en_US |
dc.publisher | IEEE Journal of Selected Topics in Quantum Electronics | en_US |
dc.subject | Silicon photonics | en_US |
dc.subject | Neuromorphic computing | en_US |
dc.subject | Reservoir computing | en_US |
dc.title | Neuromorphic computing based on silicon photonics | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Neuromorphic computing based on silicon photonics.pdf
- Size:
- 727.48 KB
- Format:
- Adobe Portable Document Format
- Description:
- Article
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: