• Login
    View Item 
    •   NRU
    • Journal Publications
    • Natural Sciences
    • Natural Sciences
    • View Item
    •   NRU
    • Journal Publications
    • Natural Sciences
    • Natural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mathematical Modelling of the Transmission Dynamics of Contagious Bovine Pleuropneumonia Reveals Minimal Target Profiles for Improved Vaccines and Diagnostic Assays

    Thumbnail
    View/Open
    Article (870.1Kb)
    Date
    2015
    Author
    Ssematimba, Amos
    Jores, Joerg
    Mariner, Jeffrey C.
    Metadata
    Show full item record
    Abstract
    Contagious bovine pleuropneumonia (CBPP) is a cattle disease that has hampered the development of the livestock sector in sub-Saharan Africa. Currently, vaccination with a live vaccine strain is its recommended control measure although unofficial antimicrobial use is widely practiced. Here, modelling techniques are used to assess the potential impact of early elimination of infected cattle via accurate diagnosis on CBPP dynamics. A herd-level stochastic epidemiological model explicitly incorporating test sensitivity and specificity is developed. Interventions by annual vaccination, annual testing and elimination and a combination of both are implemented in a stepwise manner and their effectiveness compared by running 1000 simulations per intervention over ten years. The model predicts that among the simulated interventions, the ones likely to eliminate the disease from an isolated herd all involved annual vaccination of more than 75% of the animals with a vaccine that protects for at least 18 months combined with annual testing (and elimination of positive reactors) of 75% of the animals every six months after vaccination. The highest probability of disease elimination was 97.5%and this could occur within a median of 2.3 years. Generally, our model predicts that regular testing and elimination of positive reactors using improved tests will play a significant role in minimizing CBPP burden especially in the current situation where improved vaccines are yet to be developed.
    URI
    10.1371/journal.pone.0116730
    https://nru.uncst.go.ug/handle/123456789/6823
    Collections
    • Natural Sciences [580]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners