• Login
    View Item 
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solar fruit drying technologies for smallholder farmers in Uganda, A review of design constraints and solutions

    Thumbnail
    View/Open
    Article (967.1Kb)
    Date
    2016
    Author
    Kiggundu, N.
    Wanyama, J.
    Galyaki, C.
    Banadda, N.
    Muyonga, J. H.
    Zziwa, A.
    Kabenge, I.
    Metadata
    Show full item record
    Abstract
    Solar fruit drying is a technology that is successfully applied on both domestic and commercial scale among smallholder farmers in Uganda. However, existing solar drying technologies are marred with multiple deficiencies such as inefficient conversion of trapped solar radiation to meet required enthalpy, low throughput, long drying times, and inherent difficulty to achieve acceptable hygiene among others. This review critically examines existing solar drying technologies in Uganda, highlighting design constraints and plausible solutions for supporting the growing fruit drying industry. The common types of solar dryers in Uganda are the static-bed box type solar dryer model, the PPI tunnel solar dryer model, the NRI Kawanda cabinet solar dryer, the hybrid tunnel solar dryer and the UNIDO solar hybrid dryer model. Findings reveal that the challenges characterizing existing dryers in perspective of design are attributed to; poor material selection, poor mass and energy transfers, total dependence on solar energy, lack of capacity by local craftsmen to replicate new and improved models, difficulty to clean the dryers caused by inapt model configurations, and high cost of installation to mention a few. Therefore, a need exists to develop efficient and affordable designs using scientifically proven methods such as Computer Fluid Dynamics to pre-test and optimize the dryer and incorporating alternative energy sources in the design to ensure an all-weather dryer. Additionally, disseminate such innovations to farmers, retool local artisans with quality fabrication skill sets, and develop simple manual with standards and fabrication procedures for the fruit dryers.
    URI
    http://cigrjournal.org/index.php/Ejounral/article/view/3713
    https://nru.uncst.go.ug/handle/123456789/6602
    Collections
    • Agricultural and Veterinary Sciences [1168]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners