• Login
    View Item 
    •   NRU
    • Institutional Annual Research Reports
    • Engineering and Technology
    • View Item
    •   NRU
    • Institutional Annual Research Reports
    • Engineering and Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using sediment fingerprinting to identify erosion hotspots in a sub-catchment of Lake Kivu, Rwanda

    Thumbnail
    View/Open
    Article (3.626Mb)
    Date
    2020
    Author
    Akayezu, Providence
    Musinguzi, Laban
    Natugonza, Vianny
    Ogutu-Ohwayo, Richard
    Mwathe, Ken
    Dutton, Christopher
    Manyifika, Marc
    Metadata
    Show full item record
    Abstract
    Sedimentation of water bodies affects water quality and biotic communities of aquatic ecosystems. Understanding the causes and origin of sediments is crucial for planning watershed management activities and safeguarding aquatic biodiversity and critical ecosystem services. Rwanda, as a hilly country, experiences increased sedimentation due to unsustainable land use practices in upstream catchment areas which negatively affects irrigation, fishing and hydropower generation. We used a sediment fingerprinting technique to determine sources of sedimentation and identifying hotspots of soil erosion in Sebeya River Catchment (area of 357 km2), a subcatchment of Lake Kivu located in Northwest Rwanda. Five soil samples were collected from each of the six geological classes, and 34 suspended sediment samples were taken within key locations of the hydrological network in the catchment. X-Ray Spectrometry was used to determine the geochemical composition of suspended sediments and soil. A multi-step statistical procedure with a Bayesian mixing model was used to determine the contribution of each geologic group and sub-catchment to the suspended sediments in the river. Erosion hotspots were classified based on the underlying land use and their contribution to the suspended sediments. The resulting erosion hotspot map shows that about 70.9% of the Sebeya Catchment area contributes at least 50% of sediment load in the river and currently experiences unsustainable land use and land cover. The erosion hotspots identified and culpable factors should be used to guide best land use practices, prioritizing the areas with high contribution to the river sedimentation in Sebeya Catchment.
    URI
    https://doi.org/10.1007/s10661-020-08774-5
    https://nru.uncst.go.ug/handle/123456789/5726
    Collections
    • Engineering and Technology [1]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners