• Login
    View Item 
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Drought tolerant tropical maize (Zea mays L.) developed through genetic transformation with isopentenyltransferase gene

    Thumbnail
    View/Open
    Article (1.163Mb)
    Date
    2016
    Author
    Masiga, Clet Wandui
    Tulu Bedada, Leta
    Songelael Seth, Miccah
    Maina Runo1, Steven
    Teffera, Wondyifraw
    Mugoya, Charless
    Okoth Oduor, Richard
    Blumewald, Eduardo
    Wachira, Francis
    Metadata
    Show full item record
    Abstract
    Maize is a staple food crop for millions of Africans. Despite this fact, African farmers have been harvesting average grain yield of not more than 2 t/ha while there is a potential of producing more than 10 t/ha. Drought is one of the major abiotic constraints contributing to this low productivity. Drought diminishes crop productivity mainly by causing premature leaf senescence. The ipt gene codes for isopentenyltransferase (IPT) enzyme which catalyzes the rate limiting step in the biosynthesis of cytokinin and has been shown to enhance tolerance to drought in transgenic crops by delaying drought-induced leaf senescence. This created interest to investigate if ipt gene can be useful in enhancing drought tolerance in locally adapted African tropical maize genotypes. The tropical maize inbred line CML216 was transformed with ipt gene using Agrobacterium-mediated transformation method. Five transgenic lines which were proved to be stably transformed through Southern blot analysis with copy number of 2 to 4 per event were developed. In drought assay carried out in the glass house, transgenic lines expressing the ipt gene showed tolerance to drought as revealed by delayed leaf senescence compared to the wild type plants. Transgenic plants maintained higher relative water content and total chlorophyll during the drought period and produced significantly higher mean grain yield of 44.3 g/plant while the wild type plants produced mean grain yield of 1.43 g/plant. It is proposed that the transgenic lines developed in this study can be further tested for tolerance to drought under contained field trials. Furthermore, transgenic lines developed can be used in breeding programs to improve drought tolerance in other commercial tropical maize genotypes through conventional breeding.
    URI
    https://nru.uncst.go.ug/handle/123456789/4484
    Collections
    • Agricultural and Veterinary Sciences [1178]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners