• Login
    View Item 
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genotype by environment effects on promiscuous nodulation in soybean (Glycine max L. Merrill)

    Thumbnail
    View/Open
    Article (3.022Mb)
    Date
    2017
    Author
    Agoyi, Eric E.
    Odong, Thomas L.
    Tumuhairwe, John B.
    Chigeza, Godfree
    Diers, Brian W.
    Tukamuhabwa, Phinehas
    Metadata
    Show full item record
    Abstract
    Understanding factors influencing the expression of a trait is key in designing a breeding program. Genotype by environment interaction has great influence on most quantitative traits. Promiscuous nodulation is a trait of importance for soybean production in Africa, because of the soil bacteria Bradyrhizobium japonicum not being indigenous in most African soils. Most soybean cultivars require B. japonicum for nodulation leading to the need for seed inoculation before sowing soybean in Africa. Few cultivars have capability to nodulate with Bradyrhizobia spp. that are different from B. japonicum and native in African soils. Such cultivars are termed “promiscuous cultivars.” Field experiments were conducted in six locations in Uganda for two seasons, to investigate the extent of environmental influences on the nodulation ability of promiscuous soybean genotypes. Results: Additive main effect and multiplicative interaction effects showed highly significant environment and genotype by environment (G × E) interaction effects on all nodulation traits. G × E interaction contributed more to the total variation than genotypes. The genotypes Kabanyolo I and WonderSoya were the most stable for nodules’ dry weight (NDW), which is the nodulation trait the most correlated with grain yield. Genotype UG5 was the most stable for nodules’ number (NN), and Nam II for nodules’ effectiveness (NE). The genotype NamSoy 4M had the highest performance for NN, NFW, and NDW, but was less stable. WonderSoya had the highest NE. Genotype and genotype by environment analysis grouped environments into mega-environments (MEs), and four MEs were observed for NDW, with NamSoy 4M the winning genotype in the largest ME, and Kasese B the ideal environment for that nodulation trait. Conclusion: This study provides information that can guide breeding strategies. The low genetic effect that led to high environmental and G × E interaction effects raised the need for multi-environments testing before cultivar selection and recommendation. The study revealed genotypes that are stable and others that are high performing for nodulation traits, and which can be used as parental lines in breeding programs.
    URI
    https://nru.uncst.go.ug/handle/123456789/4384
    Collections
    • Agricultural and Veterinary Sciences [1168]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners