• Login
    View Item 
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated process standardisation as zero-based approach to bitter cassava waste elimination and widely-applicable industrial biomaterial derivatives

    Thumbnail
    View/Open
    Integrated process standardisation as zero-based approach to bitter cassava waste elimination and widely-applicable industrial biomaterial derivatives (2.004Mb)
    Date
    2016
    Author
    Tumwesigye, K.S.
    Peddapatla, R.V.G.
    Metadata
    Show full item record
    Abstract
    Integrated standardised methodology for biopolymer derivatives (BPD) production from novel intact bitter cassava was demonstrated by desirability optimisation of simultaneous release, recovery, cyanogenesis (SRRC) process. BPD were evaluated for yield and colour using buffer (0, 2, 4% v/v), cassava waste solids (15, 23, 30% w/w), and extraction time (4, 7, 10 min). Nearly all the root was transformed into BPD, with higher yield and colour in comparison to starch extrinsically processed. Maximum global desirability, predicted efficient material balance, buffer 4.0% w/v, cassava waste solids 23% w/w and extraction time, 10 min, producing BPD yield, 38.8% wb Validation using buffer, 3.3% w/v, cassava waste solids, 30% w/w and extraction time, 10 min, produced 40.7% wb BPD. SEM, DSC, TGA, FTIR and moisture barrier analyses revealed a uniform microstructure and high thermal stability of BPD and film, thus demonstrating efficient performance of the standardised integrated methodology. Hence, processing intact cassava root as a standardised integrated methodology could be used to produce sustainable low cost BPD for a broad range of applications. Methodologies designed around standard integrated procedures, matching zero-based approach to contamination, are novel strategies, and if used effectively can eliminate cassava wastes and recover BPD resources as sustainable biomaterials.
    URI
    https://nru.uncst.go.ug/handle/123456789/3674
    Collections
    • Agricultural and Veterinary Sciences [1208]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners