• Login
    View Item 
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    •   NRU
    • Journal Publications
    • Agricultural and Veterinary Sciences
    • Agricultural and Veterinary Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimates of combining ability and heritability in cowpea genotypes under drought stress and nonstress conditions in Uganda

    Thumbnail
    View/Open
    Article (483.3Kb)
    Date
    2017
    Author
    Mwale, Saul Eric
    Ochwo Ssemakula, Mildred
    Sadik, Kassim
    Alladassi, Boris
    Rubaihayo, Patrick
    Gibson, Paul
    Singini, Wales
    Edema, Richard
    Metadata
    Show full item record
    Abstract
    Cowpea is an important source of food and income for small scale farmers in Uganda. Production is, however, affected by both biotic and abiotic stresses. Drought stress has recently emerged as a serious concern due to the effects of climate change. This study was therefore undertaken to estimate the general and specific combining ability effects of parents and crosses as well as estimate the heritability of delayed leaf senescence, seed yield and its components under drought stress. Five drought tolerant genotypes were crossed with four drought sensitive genotypes in a North Carolina II mating design. The study revealed that drought tolerance is conditioned by both additive and non-additive genetic effects with the predominance of non-additive genetic effects for seed yield, 100 seed weight and number of pods per plant. Delayed leaf senescence was however, controlled by additive genetic effects, implying that progenies performance could be predicted from parents General Combining Ability (GCA) effects. The cultivars SECOW 5T, IT93K-452-1 and IT98K-205-8 were good combiners for drought tolerance. The F2 families: SECOW 3B x IT98K-205-8, SECOW 5T x IT98K-205-8, SECOW 4W x IT98K- 205-8 and SECOW 1T x IT98K-205-8 had positive Specific Combining Ability(SCA) effects in seed yield, number of pods per plant and 100 seed weight, implying that they performed better than what was predicted by their parents GCA effect. As such, they are promising cross combinations that can be advanced for later generation selection.
    URI
    https://nru.uncst.go.ug/handle/123456789/3502
    Collections
    • Agricultural and Veterinary Sciences [1193]

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners
     

     

    Browse

    All of NRU
    Communities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This Collection
    By Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Research Dissemination Platform copyright © since 2021  UNCST
    Contact Us | Send Feedback
    Partners