Journal Publications
Permanent URI for this community
Browse
Browsing Journal Publications by Subject "1H NMR"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Investigation of the effect of exposure to non cytotoxic amounts of microcystins(Metabolomics, 2011) Birungi, Grace; Fong Yau Li, SamThis paper describes a metabolomic approach for investigation of the potential effect of exposure of humans to low amounts of microcystins using HepG2 cell line. Microcystins are hepatotoxins produced by cyanobacteria (blue-green algae) which occur in water bodies with high eutrophication especially those with a slow flow rate or those that are stagnant in warm climates. Mammalian exposure to these compounds has been associated with deleterious effects and in high dosage cases, deaths of animals has been reported. The metabolic profile of HepG2 cells is closely related to that of hepatocytes and therefore serves as a good model due to their human origin. Proton nuclear magnetic resonance spectroscopy (1H NMR) and direct injection mass spectrometry (DIMS) were used to analyse media extracts from the cells and data obtained was reduced by chemometric methods. The use of principal component analysis (PCA) enabled achievement of a visual distinction between the metabolic profiles of samples exposed to microcystins, control samples (unexposed), and those which were exposed to acetaminophen (positive control). A profile of media components showed that some components in the samples exposed to microcystins increased compared to those in control samples. They included amino acids, organic acids, lipids, some purines and pyrimidines. In general exposure to low concentration of microcystin was found to interfere with amino acid metabolism, carbohydrate metabolism, lipid metabolism and nucleic acids metabolism. Furthermore, low concentration of microcystins did not result in significant cell death; rather the cells continued to proliferate.Item Metabolomics Approach for Investigation of Effects of Dengue Virus Infection Using the EA.hy926 Cell Line(Journal of proteome research, 2010) Birungi, Grace; Meijie Chen, Sheryl; Pheng Loy, Boon; Ng, Mah Lee; Yau Li, Sam FongThis paper describes a multiplatform analytical approach combining proton nuclear magnetic resonance (1H NMR) spectroscopy and mass spectrometry (MS), together with pattern recognition tools in a metabolomic study used to investigate the effects of dengue virus infection. The four serotypes of dengue, DEN-1, DEN-2, DEN-3, and DEN-4, were inoculated into the EA.hy926 cell line, which was then incubated for various time intervals. Principal component analysis (PCA) of the 1H NMR and MS data revealed metabolic profile patterns or fingerprint patterns that can be attributed to specific virus serotypes. Distinct effects of infection by each serotype were demonstrated, and these differences were attributed to changes in levels of metabolites (including amino acids, dicarboxylic acids, fatty acids, and organic acids related to the tricarboxylic acid (TCA) cycle). The study demonstrated application of metabolomics to improve understanding of the effect of dengue infection on endothelial cells’ metabolome.