Browsing by Author "Wagaba, Henry"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Artificial microRNA-derived resistance to Cassava brown streak disease(Journal of virological methods, 2016) Wagaba, Henry; Patil, Basavaprabhu L.; Mukasa, Settumba; Alicai, Titus; Fauquet, Claude M.; Taylor, Nigel J.Artificial miRNAs (amiRNA) were generated targeting conserved sequences within the genomes of the two causal agents of Cassava brown streak disease (CBSD): Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Transient expression studies on ten amiRNAs targeting 21 nt conserved sequences of P1(CBSV and UCBSV), P3(CBSV and UCBSV), CI(UCBSV), NIb(CBSV and UCBSV), CP(UCBSV) and the un-translated region (3 -UTR) were tested in Nicotiana benthamiana. Four out of the ten amiRNAs expressed the corresponding amiRNA at high levels. Transgenic N. benthamiana plants were developed for the four amiRNAs targeting the P1 and NIb genes of CBSV and the P1 and CP genes of UCBSV and shown to accumulate miRNA products. Transgenic plants challenged with CBSV and UCBSV isolates showed resistance levels that ranged between ∼20–60% against CBSV and UCBSV and correlated with expression levels of the transgenically derived miRNAs. MicroRNAs targeting P1 and NIb of CBSV showed protection against CBSV and UCBSV, while amiRNAs targeting the P1 and CP of UCBSV showed protection against UCBSV but were less efficient against CBSV. These results indicate a potential application of amiRNAs for engineering resistance to CBSD-causing viruses in cassava.Item Efficient transmission of Cassava brown streak disease viral pathogens by chip bud grafting(BMC Research, 2013) Wagaba, Henry; Beyene, Getu; Trembley, Cynthia; Alicai, Titus; Fauquet, Claude M.; Taylor, Nigel J.Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Findings: Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6–8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2–6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12–14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10–14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). Conclusions: The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and can be inoculated in a controlled manner with CBSV and UCBSV, either singly or together. Disease symptoms develop rapidly, allowing better studies of interactions between these viral pathogens, their movement within shoot and root systems, and how they induce their destructive disease symptoms.Item Eleven years of breeding efforts to combat cassava brown streak disease(Breeding Science, 2016) Sezi Kawuki, Robert; Kaweesi, Tadeo; Esuma, Williams; Pariyo, Anthony; Kayondo, Ismail Siraj; Ozimati, Alfred; Kyaligonza, Vincent; Abaca, Alex; Orone, Joseph; Tumuhimbise, Robooni; Nuwamanya, Ephraim; Abidrabo, Philip; Amuge, Teddy; Ogwok, Emmanuel; Okao, Geoffrey; Wagaba, Henry; Adiga, Gerald; Alicai, Titus; Omongo, Christopher; Bua, Anton; Ferguson, Morag; Kanju, Edward; Baguma, YonaCassava (Manihot esculenta Crantz) production is currently under threat from cassava brown streak disease (CBSD), a disease that is among the seven most serious obstacles to world’s food security. Three issues are of significance for CBSD. Firstly, the virus associated with CBSD, has co-evolved with cassava outside its center of origin for at least 90 years. Secondly, that for the last 74 years, CBSD was only limited to the low lands. Thirdly, that most research has largely focused on CBSD epidemiology and virus diversity. Accordingly, this paper focuses on CBSD genetics and/or breeding and hence, presents empirical data generated in the past 11 years of cassava breeding in Uganda. Specifically, this paper provides: 1) empirical data on CBSD resistance screening efforts to identify sources of resistance and/or tolerance; 2) an update on CBSD resistance population development comprising of full-sibs, half-sibs and S1 families and their respective field performances; and 3) insights into chromosomal regions and genes involved in CBSD resistance based on genome wide association analysis. It is expected that this information will provide a foundation for harmonizing on-going CBSD breeding efforts and consequently, inform the future breeding interventions aimed at combating CBSD.Item Field Level RNAi-Mediated Resistance to Cassava Brown Streak Disease across Multiple Cropping Cycles and Diverse East African Agro-Ecological Locations(Frontiers in plant science, 2017) Wagaba, Henry; Beyene, Getu; Aleu, Jude; Odipio, John; Okao-Okuja, Geoffrey; Deepika Chauhan, Raj; Munga, Theresia; Obiero, Hannington; Halsey, Mark E.; Ilyas, Muhammad; Raymond, Peter; Bua, Anton; Taylor, Nigel J.; Miano, Douglas; Alicai, TitusCassava brown streak disease (CBSD) presents a serious threat to cassava production in East and Central Africa. Currently, no cultivars with high levels of resistance to CBSD are available to farmers. Transgenic RNAi technology was employed to combat CBSD by fusing coat protein (CP) sequences from Ugandan cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) to create an inverted repeat construct (p5001) driven by the constitutive Cassava vein mosaic virus promoter. Twenty-five plant lines of cultivar TME 204 expressing varying levels of small interfering RNAs (siRNAs) were established in confined field trials (CFTs) in Uganda and Kenya. Within an initial CFT at Namulonge, Uganda, non-transgenic TME 204 plants developed foliar and storage root CBSD incidences at 96–100% by 12 months after planting. In contrast, 16 of the 25 p5001 transgenic lines showed no foliar symptoms and had less than 8% of their storage roots symptomatic for CBSD. A direct positive correlation was seen between levels of resistance to CBSD and expression of transgenic CP-derived siRNAs. A subsequent CFT was established at Namulonge using stem cuttings from the initial trial. All transgenic lines established remained asymptomatic for CBSD, while 98% of the non-transgenic TME 204 stake-derived plants developed storage roots symptomatic for CBSD. Similarly, very high levels of resistance to CBSD were demonstrated by TME 204 p5001 RNAi lines grown within a CFT over a full cropping cycle at Mtwapa, coastal Kenya. Sequence analysis of CBSD causal viruses present at the trial sites showed that the transgenic lines were exposed to both CBSV and UCBSV, and that the sequenced isolates shared >90% CP identity with transgenic CP sequences expressed by the p5001 inverted repeat expression cassette. These results demonstrate very high levels of field resistance to CBSD conferred by the p5001 RNAi construct at diverse agro-ecological locations, and across the vegetative cropping cycle.Item Loss of CMD2-mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis(Molecular plant pathology, 2016) Beyene, Getu; Chauhan, Raj Deepika; Wagaba, Henry; Moll, Theodore; Alicai, Titus; Miano, Douglas; Carrington, James C.; Taylor, Nigel J .Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer-preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)-mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wildtype TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2-type varieties TME 3 and TME 7, but the CMD1-type cultivar TMS 30572 and the CMD3-type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2-mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field-level resistance in CMD2-type cultivars presently grown by farmers in East Africa, where CMD pressure is high.Item RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava(Molecular Plant Pathology, 2011) Yadav, Jitender S.; Ogwok, Emmanuel; Wagaba, Henry; Patil, Basavaprabhu L.; Bagewadi, Basavaraj; Alicai, Titus; Gaitan-Solis, Eliana; Taylor, Nigel J.; Fauquet, Claude M.Cassava brown streak disease (CBSD), caused by Cassava brown streak Uganda virus (CBSUV) and Cassava brown streak virus (CBSV), is of new epidemic importance to cassava (Manihot esculenta Crantz) production in East Africa, and an emerging threat to the crop in Central and West Africa. This study demonstrates that at least one of these two ipomoviruses, CBSUV, can be efficiently controlled using RNA interference (RNAi) technology in cassava. An RNAi construct targeting the near full-length coat protein (FL-CP) of CBSUV was expressed constitutively as a hairpin construct in cassava. Transgenic cassava lines expressing small interfering RNAs (siRNAs) against this sequence showed 100% resistance to CBSUV across replicated graft inoculation experiments. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed the presence of CBSUV in leaves and some tuberous roots from challenged controls, but not in the same tissues from transgenic plants. This is the first demonstration of RNAi-mediated resistance to the ipomovirus CBSUV in cassava.Item RNAi-mediated resistance to diverse isolates belonging to two virus species involved in Cassava brown streak disease(Molecular plant pathology, 2011) Patil, Basavaprabhu L.; Ogwok, Emmanuel; Wagaba, Henry; Mohammed, Ibrahim U.; Yadav, Jitender S.; Bagewadi, Basavaraj; Taylor, Nigel J.; Kreuze, Jan F.; Maruthi, M. N.; Alicai, Titus; Fauquet, Claude M.Cassava brown streak disease (CBSD) is emerging as one of the most important viral diseases of cassava (Manihot esculenta) and is considered today as the biggest threat to cassava cultivation in East Africa. The disease is caused by isolates of at least two phylogenetically distinct species of single-stranded RNA viruses belonging to the family Potyviridae, genus Ipomovirus. The two species are present predominantly in the coastal lowland [Cassava brown streak virus (CBSV); Tanzania and Mozambique] and highland [Cassava brown streak Uganda virus (CBSUV); Lake Victoria Basin, Uganda, Kenya and Malawi] in East Africa. In this study, we demonstrate that CBSD can be efficiently controlled using RNA interference (RNAi). Three RNAi constructs targeting the highland species were generated, consisting of the full-length (FL; 894 nucleotides), 397-nucleotide N-terminal and 491- nucleotide C-terminal portions of the coat protein (CP) gene of a Ugandan isolate of CBSUV (CBSUV-[UG:Nam:04]), and expressed constitutively in Nicotiana benthamiana. After challenge with CBSUV-[UG:Nam:04], plants homozygous for FL-CP showed the highest resistance, followed by the N-terminal and C-terminal lines with similar resistance. In the case of FL, approximately 85% of the transgenic plant lines produced were completely resistant. Some transgenic lines were also challenged with six distinct isolates representing both species: CBSV and CBSUV. In addition to nearly complete resistance to the homologous virus, two FL plant lines showed 100% resistance and two C-terminal lines expressed 50–100% resistance, whereas the N-terminal lines succumbed to the nonhomologous CBSV isolates. Northern blotting revealed a positive correlation between the level of transgene-specific small interfering RNAs detected in transgenic plants and the level of virus resistance.This is the first demonstration of RNAi-mediated resistance to CBSD and protection across very distant isolates (more than 25% in nucleotide sequence) belonging to two different species: Cassava brown streak virus and Cassava brown streak Uganda virusItem A Virus-Derived Stacked RNAi Construct Confers Robust Resistance to Cassava Brown Streak Disease(Frontiers in Plant Science, 2017) Beyene, Getu; Deepika Chauhan, Raj; Ilyas, Muhammad; Wagaba, Henry; Fauquet, Claude M.; Miano, Douglas; Alicai, Titus; Taylor, Nigel J.Cassava brown streak disease (CBSD) threatens food and economic security for smallholder farmers throughout East and Central Africa, and poses a threat to cassava production in West Africa. CBSD is caused by two whitefly-transmitted virus species: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) (Genus: Ipomovirus, Family Potyviridae). Although varying levels of tolerance have been achieved through conventional breeding, to date, effective resistance to CBSD within East African cassava germplasm has not been identified. RNAi technology was utilized to integrate CBSD resistance into the Ugandan farmer-preferred cassava cultivar TME 204. Transgenic plant lines were generated expressing an inverted repeat construct (p5001) derived from coat-protein (CP) sequences of CBSV and UCBSV fused in tandem. Northern blots using probes specific for each CP sequence were performed to characterize 169 independent transgenic lines for accumulation of CP-derived siRNAs. Transgenic plant lines accumulating low, medium and high levels of siRNAs were bud graft challenged with the virulent CBSV Naliendele isolate alone or in combination with UCBSV. Resistance to CBSD in the greenhouse directly correlated to levels of CPderived siRNAs as determined by visual assessment of leaf and storage root symptoms, and RT-PCR diagnosis for presence of the pathogens. Low expressing lines were found to be susceptible to CBSV and UCBSV, while medium to high accumulating plant lines were resistant to both virus species. Absence of detectable virus in the best performing p5001 transgenic lines was further confirmed by back-inoculation via sap or graft challenge to CBSD susceptible Nicotiana benthamiana and cassava cultivar 60444, respectively. Data presented shows robust resistance of transgenic p5001 TME 204 lines to both CBSV and UCBSV under greenhouse conditions. Levels of resistance correlated directly with levels of transgene derived siRNA expression such that the latter can be used as predictor of resistance to CBSD