Browsing by Author "Lancioni, Christina"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item CD81 T Cells Provide an Immunologic Signature of Tuberculosis in Young Children(American Thoracic Society, 2011) Lancioni, Christina; Nyendak, Mellisa; Sarah Zalwango, Sarah Kiguli; Mori, Tomi; Mayanja-Kizza, Harriet; Balyejusa, Stephen; Null, Megan; Baseke, Joy; Mulindwa, Deo; Byrd, Laura; Swarbrick, Gwendolyn; Scott, Christine; Johnson, Denise F.; Malone, LaShaunda; Mudido-Musoke, Philipa; Boom, Henry; Lewinsohn, David M.; Lewinsohn, Deborah A.Mycobacterium tuberculosis (Mtb), the etiology of tuberculosis (TB), causes over 9 million cases of disease and 1.7 million deaths annually (1). The only available vaccine to prevent TB, bacillus Calmette-Gue´ rin, offers little protection against the most common disease manifestations (2) and efforts to develop an improved vaccine are hampered by poor understanding of immunologic events that occur after Mtb exposure. Scientific studies of immunologic responses to initial Mtb infection are difficult because most individuals living in TB-endemic settings have experienced multiple Mtb exposures. Young children, however, suffer disproportionately after exposure to Mtb, because they are at substantial risk for developing TB after primary infection (3–5). Therefore, young children with TB offer a valuable window into the human immune response to primary Mtb infection.Item Contact Investigation for Active Tuberculosis Among Child Contacts in Uganda(Oxford University Press, 2013) Jaganath, Devan; Zalwango, Sarah; Okware, Brenda; Nsereko, Mary; Kisingo, Hussein; Malone, LaShaunda; Lancioni, Christina; Okwera, Alphonse; Joloba, Moses; Mayanja-Kizza, Harriet; Boom, Henry; Stein, Catherine; Mupere, EzekielBackground. Tuberculosis is a large source of morbidity and mortality among children. However, limited studies characterize childhood tuberculosis disease, and contact investigation is rarely implemented in high-burden settings. In one of the largest pediatric tuberculosis contact investigation studies in a resource-limited setting, we assessed the yield of contact tracing on childhood tuberculosis and indicators for disease progression in Uganda. Methods. Child contacts aged <15 years in Kampala, Uganda, were enrolled from July 2002 to June 2009 and evaluated for tuberculosis disease via clinical, radiographic, and laboratory methods for up to 24 months. Results. Seven hundred sixty-one child contacts were included in the analysis. Prevalence of tuberculosis in our child population was 10%, of which 71% were culture-confirmed positive. There were no cases of disseminated tuberculosis, and 483 of 490 children (99%) started on isoniazid preventative therapy did not develop disease. Multivariable testing suggested risk factors including human immunodeficiency virus (HIV) status (odds ratio [OR], 7.90; P < .001), and baseline positive tuberculin skin test (OR, 2.21; P = .03); BCG vaccination was particularly protective, especially among children aged ≤5 years (OR, 0.23; P < .001). Adult index characteristics such as sex, HIV status, and extent or severity of disease were not associated with childhood disease. Conclusions. Contact tracing for children in high-burden settings is able to identify a large percentage of culture-confirmed positive tuberculosis cases before dissemination of disease, while suggesting factors for disease progression to identify who may benefit from targeted screening.Item Postnatal Expansion, Maturation, and Functionality of MR1T Cells in Humans(Frontiers in Immunology, 2020) Swarbrick, Gwendolyn M.; Gela, Anele; Cansler, Meghan E.; Null, Megan D.; Duncan, Rowan B.; Nemes, Elisa; Shey, Muki; Nsereko, Mary; Mayanja-Kizza, Harriet; Kiguli, Sarah; Koh, Jeffrey; Hanekom, Willem A.; Hatherill, Mark; Lancioni, Christina; Lewinsohn, David M.; Scriba, Thomas J.; Lewinsohn, Deborah A.MR1-restricted T (MR1T) cells are defined by their recognition of metabolite antigens presented by the monomorphic MHC class 1-related molecule, MR1, the most highly conserved MHC class I related molecule in mammalian species. Mucosal-associated invariant T (MAIT) cells are the predominant subset of MR1T cells expressing an invariant TCR a-chain, TRAV1-2. These cells comprise a T cell subset that recognizes and mediates host immune responses to a broad array of microbial pathogens, including Mycobacterium tuberculosis. Here, we sought to characterize development of circulating human MR1T cells as defined by MR1-5-OP-RU tetramer labeling and of the TRAV1-2+ MAIT cells defined by expression of TRAV1-2 and high expression of CD26 and CD161 (TRAV1-2+CD161++CD26++ cells). We analyzed postnatal expansion, maturation, and functionality of peripheral blood MR1-5-OP-RU tetramer+ MR1T cells in cohorts from three different geographic settings with different tuberculosis (TB) vaccination practices, levels of exposure to and infection with M. tuberculosis. Early after birth, frequencies of MR1-5-OP-RU tetramer+ MR1T cells increased rapidly by several fold. This coincided with the transition from a predominantly CD4+ and TRAV1-2− population in neonates, to a predominantly TRAV1-2+CD161++CD26++ CD8+ population. We also observed that tetramer+ MR1T cells that expressed TNF upon mycobacterial stimulation were very low in neonates, but increased ∼10-fold in the first year of life. These functional MR1T cells in all age groups were MR1-5-OP-RU tetramer+TRAV1-2+ and highly expressed CD161 and CD26, markers that appeared to signal phenotypic and functional maturation of this cell subset. This age-associated maturation was also marked by the loss of naïve T cell markers on tetramer+ TRAV1-2+ MR1T cells more rapidly than tetramer+TRAV1-2− MR1T cells and non-MR1T cells. These data suggest that neonates have infrequent populations of MR1T cells with diverse phenotypic attributes; and that exposure to the environment rapidly and preferentially expands the MR1-5-OP-RU tetramer+TRAV1-2+ population of MR1T cells, which becomes the predominant population of functional MR1T cells early during childhood.