Browsing by Author "Kagirita, Atek"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Ebola disease outbreak caused by the Sudan virus in Uganda, 2022: a descriptive epidemiological study(Elsevier Ltd, 2024-10) Ario, Alex R; Ahirirwe, Sherry R; Ocero, Jane R Aceng; Atwine, Diana; Muruta, Allan N; Kagirita, Atek; Tegegn, Yonas; Kadobera, Daniel; Kwesiga, Benon; Gidudu, Samuel; Migisha, Richard; Makumbi, Issa; Elyanu, Peter J; Ndyabakira, Alex; Et.alUganda has had seven Ebola disease outbreaks, between 2000 and 2022. On Sept 20, 2022, the Ministry of Health declared a Sudan virus disease outbreak in Mubende District, Central Uganda. We describe the epidemiological characteristics and transmission dynamics.BACKGROUNDUganda has had seven Ebola disease outbreaks, between 2000 and 2022. On Sept 20, 2022, the Ministry of Health declared a Sudan virus disease outbreak in Mubende District, Central Uganda. We describe the epidemiological characteristics and transmission dynamics.For this descriptive study, cases were classified as suspected, probable, or confirmed using Ministry of Health case definitions. We investigated all reported cases to obtain data on case-patient demographics, exposures, and signs and symptoms, and identified transmission chains. We conducted a descriptive epidemiological study and also calculated basic reproduction number (Ro) estimates.METHODSFor this descriptive study, cases were classified as suspected, probable, or confirmed using Ministry of Health case definitions. We investigated all reported cases to obtain data on case-patient demographics, exposures, and signs and symptoms, and identified transmission chains. We conducted a descriptive epidemiological study and also calculated basic reproduction number (Ro) estimates.Between Aug 8 and Nov 27, 2022, 164 cases (142 confirmed, 22 probable) were identified from nine (6%) of 146 districts. The median age was 29 years (IQR 20-38), 95 (58%) of 164 patients were male, and 77 (47%) patients died. Symptom onsets ranged from Aug 8 to Nov 27, 2022. The case fatality rate was highest in children younger than 10 years (17 [74%] of 23 patients). Fever (135 [84%] of 160 patients), vomiting (93 [58%] patients), weakness (89 [56%] patients), and diarrhoea (81 [51%] patients) were the most common symptoms; bleeding was uncommon (21 [13%] patients). Before outbreak identification, most case-patients (26 [60%] of 43 patients) sought care at private health facilities. The median incubation was 6 days (IQR 5-8), and median time from onset to death was 10 days (7-23). Most early cases represented health-care-associated transmission (43 [26%] of 164 patients); most later cases represented household transmission (109 [66%]). Overall Ro was 1·25.FINDINGSBetween Aug 8 and Nov 27, 2022, 164 cases (142 confirmed, 22 probable) were identified from nine (6%) of 146 districts. The median age was 29 years (IQR 20-38), 95 (58%) of 164 patients were male, and 77 (47%) patients died. Symptom onsets ranged from Aug 8 to Nov 27, 2022. The case fatality rate was highest in children younger than 10 years (17 [74%] of 23 patients). Fever (135 [84%] of 160 patients), vomiting (93 [58%] patients), weakness (89 [56%] patients), and diarrhoea (81 [51%] patients) were the most common symptoms; bleeding was uncommon (21 [13%] patients). Before outbreak identification, most case-patients (26 [60%] of 43 patients) sought care at private health facilities. The median incubation was 6 days (IQR 5-8), and median time from onset to death was 10 days (7-23). Most early cases represented health-care-associated transmission (43 [26%] of 164 patients); most later cases represented household transmission (109 [66%]). Overall Ro was 1·25.Despite delayed detection, the 2022 Sudan virus disease outbreak was rapidly controlled, possibly thanks to a low Ro. Children (aged <10 years) were at the highest risk of death, highlighting the need for targeted interventions to improve their outcomes during Ebola disease outbreaks. Initial care-seeking occurred at facilities outside the government system, showing a need to ensure that private and public facilities receive training to identify possible Ebola disease cases during an outbreak. Health-care-associated transmission in private health facilities drove the early outbreak, suggesting gaps in infection prevention and control.INTERPRETATIONDespite delayed detection, the 2022 Sudan virus disease outbreak was rapidly controlled, possibly thanks to a low Ro. Children (aged <10 years) were at the highest risk of death, highlighting the need for targeted interventions to improve their outcomes during Ebola disease outbreaks. Initial care-seeking occurred at facilities outside the government system, showing a need to ensure that private and public facilities receive training to identify possible Ebola disease cases during an outbreak. Health-care-associated transmission in private health facilities drove the early outbreak, suggesting gaps in infection prevention and control.None.FUNDINGNone. MEDLINE - AcademicItem Factors Associated with COVID-19 Vaccine Hesitancy in Uganda: A Population-Based Cross-Sectional Survey(International Journal of General Medicine, 2022) Kabagenyi, Allen; Wasswa, Ronald; Nannyonga, Betty K.; Nyachwo, Evelyne B.; Kagirita, Atek; Nabirye, Juliet; Atuhaire, Leonard; Waiswa, PeterVaccination toward coronavirus disease (COVID-19) has been recommended and adopted as one of the measures of reducing the spread of this novel disease worldwide. Despite this, vaccine uptake among the Ugandan population has been low with reasons surrounding this being unknown. This study aimed to investigate the factors associated with COVID-19 vaccine hesitancy in Uganda. Methods: A cross-sectional study was conducted on a total of 1042 adults in the districts of Mukono, Kiboga, Kumi, Soroti, Gulu, Amuru, Mbarara and Sheema from June to November 2021. Data were analyzed using STATA v.15. Barriers to vaccination were analyzed descriptively, while a binary logistic regression model was used to establish the factors associated with COVID-19 vaccine hesitancy. Results: Overall, COVID-19 vaccine hesitancy was 58.6% (611). Respondents from urban areas and those in the eastern or northern region had increased odds of vaccine hesitancy. Further, higher education level and having knowledge on how COVID-19 is transmitted significantly reduced the odds of vaccine hesitancy. The study also noted individual perception such as COVID-19 kills only people with underlying medical conditions, as well as limited awareness on vaccine types or vaccination areas as the main reasons to vaccine hesitancy. Relatedly, other misconceptions like the ability of the vaccine to cause infertility, or spreading the virus into the body, and acknowledgment of alcohol as a possible cure were other reasons for vaccine hesitancy. Conclusion: The proportion of COVID-19 vaccine hesitancy is still high among the population with this varying across regions. This is driven by low education level and limited awareness on the vaccination as well as perceived myths and misconceptions. The study recommends mass sensitization of the population on the benefits of vaccination using various channels as well as rolling out community-based outreach vaccination campaigns across the country.Item Operationalization of COVID-19 Rapid Diagnosis Using Xpert® Xpress SARS CoV-2 Assay in Resource-Limited Settings: Early Implementation Lessons From Uganda(Research Square, 2021) Nsawotebba, Andrew; Ibanda, Ivan; Ssentalo Bagaya, Bernard; Nyombi, Abdunoor; Kagirita, Atek; Tugumisirize, Didas; Mujuni, Dennis; Majwala, Robert Kaos; Ocen, Francis; Kabugo, Joel; Adam, Isa; Wekiya, Enock; Munduku, Benoni; Linda, Lillian; Kalyesubula-Kibuuka, Simon; Okiira, Christopher; Kigozi, Edgar; Ogwok, Patrick; Lutakoome Joloba, Moses; Nabadda, Susan; Ssengooba, WillyThe novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes COVID-19 disease is a global challenge. Several countries have adopted testing, isolation, and tracing strategy towards the control of the COVID-19 pandemic, but access to rapid and accurate testing is still a global challenge. The conventional PCR – based assay is the most commonly used test yet it has huge costs, infrastructural, and procurement logistical challenges. The Xpert® Xpress SARS-CoV-2 test is an automated in – vitro diagnostic test for the qualitative detection of nucleic acid from SARS-CoV-2 within a turnaround time of 60 minutes on the widely used GeneXpert Dx Instrument Systems. Here we document the best practices and challenges encountered with the operationalization of Xpert® Xpress SARS-CoV-2 testing in a resource-limited setting. Materials and Methods: The Xpert® Xpress SARS-CoV-2 implementation followed an operational work plan that included; Laboratory COVID-19 policy and planning, situational analysis of the Laboratory network, country Xpert® Xpress SARS-CoV-2 assay verification, and rollout at Mutukula Port Health Laboratory. The Laboratory strategy was based on a set of six objectives; conducting infrastructural modifications, building a strong COVID-19 testing capacity, developing robust Laboratory Quality and Information Management Systems, establishing a Bio-risk management and Bio-banking capacity.Item Shifts in Geographic Distribution and Antimicrobial Resistance during a Prolonged Typhoid Fever Outbreak — Bundibugyo and Kasese Districts, Uganda, 2009–2011(PLoS Negl Trop Dis, 2014) Spalding Walters, Maroya; Routh, Janell; Mikoleit, Matthew; Kadivane, Samuel; Ouma, Caroline; Mubiru, Denis; Mbusa, Ben; Murangi, Amos; Ejoku, Emmanuel; Rwantangle, Absalom; Kule, , Uziah; Lule, John; Garrett, Nancy; Halpin, Jessica; Maxwell, Nikki; Kagirita, Atek; Mulabya, Fred; Makumbi, Issa; Freeman, Molly; Joyce, Kevin; Hill, Vince; Downing, Robert; Mintz, EricSalmonella enterica serovar Typhi is transmitted by fecally contaminated food and water and causes approximately 22 million typhoid fever infections worldwide each year. Most cases occur in developing countries, where approximately 4% of patients develop intestinal perforation (IP). In Kasese District, Uganda, a typhoid fever outbreak notable for a high IP rate began in 2008. We report that this outbreak continued through 2011, when it spread to the neighboring district of Bundibugyo. Methodology/Principal Findings: A suspected typhoid fever case was defined as IP or symptoms of fever, abdominal pain, and $1 of the following: gastrointestinal disruptions, body weakness, joint pain, headache, clinically suspected IP, or nonresponsiveness to antimalarial medications. Cases were identified retrospectively via medical record reviews and prospectively through laboratory-enhanced case finding. Among Kasese residents, 709 cases were identified from August 1, 2009–December 31, 2011; of these, 149 were identified during the prospective period beginning November 1, 2011. Among Bundibugyo residents, 333 cases were identified from January 1–December 31, 2011, including 128 cases identified during the prospective period beginning October 28, 2011. IP was reported for 507 (82%) and 59 (20%) of Kasese and Bundibugyo cases, respectively. Blood and stool cultures performed for 154 patients during the prospective period yielded isolates from 24 (16%) patients. Three pulsed-field gel electrophoresis pattern combinations, including one observed in a Kasese isolate in 2009, were shared among Kasese and Bundibugyo isolates. Antimicrobial susceptibility was assessed for 18 isolates; among these 15 (83%) were multidrug-resistant (MDR), compared to 5% of 2009 isolates. Conclusions/Significance: Molecular and epidemiological evidence suggest that during a prolonged outbreak, typhoid spread from Kasese to Bundibugyo. MDR strains became prevalent. Lasting interventions, such as typhoid vaccination and improvements in drinking water infrastructure, should be considered to minimize the risk of prolonged outbreaks in the future.