Browsing by Author "Gooding, Justin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core−Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules(Journal of the American Chemical Society, 2019) O’Mara, Peter B.; Wilde, Patrick; Benedetti, Tania M.; Andrones, Corina; Cheong, Soshan; Gooding, Justin; Tilley, Richard D.; Schuhmann, WolfgangEnzymes can perform complex multistep cascade reactions by linking multiple distinct catalytic sites via substrate channeling. We mimic this feature in a generalized approach with an electrocatalytic nanoparticle for the carbon dioxide reduction reaction comprising a Ag core surrounded by a porous Cu shell, providing different active sites in nanoconfined volumes. The architecture of the nanozyme provides the basis for a cascade reaction, which promotes C−C coupling reactions. The first step occurs on the Ag core, and the subsequent steps on the porous copper shell, where a sufficiently high CO concentration due to the nanoconfinement facilitates C−C bond formation. The architecture yields the formation of n-propanol and propionaldehyde at potentials as low as −0.6 V vs RHE.Item Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers for bioimaging and sensing applications(Biomedical Applications, 2017) Cheng, Xiaoyu; McVey, Benjamin F.P.; Robinson, Andrew B.; Longatte, Guillaume; O’Mara, Peter B.; Tan, Vincent T. G.; Thordarson, Pall; Tilley, Richard D.; Gaus, Katharina; Gooding, JustinIn this paper we present recent advances in Förster resonance energy transfer (FRET) sensing and bioimaging using nontoxic silicon quantum dots. (SiQDs) In our work, we prepare SiQDs-dye conjugates, with SiQDs serving as the donor which are covalently attached to organic dye acceptors via self-assembled monolayer linkers. Enzymatic cleavage of the peptide leads to changes in FRET response which was monitored using fluorescence lifetime imaging microscopy (FLIM-FRET). The combination of interfacial design and optical imaging presented in this work opens new opportunities for bio-applications using nontoxic silicon quantum dots.