Browsing by Author "Culhane, Marie R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item African Swine Fever Detection and Transmission Estimates Using Homogeneous Versus Heterogeneous Model Formulation in Stochastic Simulations Within Pig Premises(Research Square, 2022) Ssematimba, Amos; Malladi, Sasidhar; Bonney, Peter J.; Charles, Kaitlyn M. St.; Boyer, Timothy C.; Goldsmith, Timothy; Cardona, Carol J.; Corzo, Cesar A.; Culhane, Marie R.This study aimed to assess the impact on within-herd transmission dynamics of African swine fever (ASF) when the models used to simulate transmission assume there is homogeneous mixing of animals within a barn. Barn-level heterogeneity was explicitly captured using a stochastic, individual pig-based, heterogeneous transmission model that considers three types of infection transmission, 1) within-pen via nose-to-nose contact; 2) between-pen via nose-to-nose contact with pigs in adjacent pens; and 3) both between- and within-pen via distance independent mechanisms (e.g., via fomites). Predictions were compared between the heterogeneous and the homogeneous Gillespie models. Results showed that the predicted mean number of infectious pigs at specific time points differed greatly between the homogeneous and heterogeneous models for scenarios with low levels of between pen contacts via distance independent pathways and the differences between the two model predictions were more pronounced for the slow contact rate scenario. The heterogeneous transmission model results also showed that it may take significantly longer to detect ASF, particularly in large barns when transmission predominantly occurs via nose-to-nose contact between pigs in adjacent pens. The findings emphasize the need for completing preliminary explorations when working with homogeneous mixing models to ascertain their suitability to predict disease outcomes.Item Predicting the time to detect moderately virulent African swine fever virus in finisher swine herds using a stochastic disease transmission model(BMC Veterinary Research, 2022) Malladi, Sasidhar; Ssematimba, Amos; Bonney, Peter J.; Charles, Kaitlyn M. St.; Boyer, Timothy; Goldsmith, Timothy; Walz, Emily; Cardona, Carol J.; Culhane, Marie R.African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality. Results: Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days). Conclusion: These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.Item Preparing for a Foreign Animal Disease Outbreak Using a Novel Tabletop Exercise(Prehospital and Disaster Medicine, 2018) Linskens, Eric J.; Neu, Abby E.; Walz, Emily J.; Charles, Kaitlyn M. St.; Culhane, Marie R.; Ssematimba, Amos; Goldsmith, Timothy J.; Halvorson, David A.; Cardona, Carol J.Foreign animal disease (FAD) outbreaks can have devastating impacts, but they occur infrequently in any specific sector anywhere in the United States (US). Training to proactively discuss implementation of control and prevention strategies are beneficial in that they provide stakeholders with the practical information and educational experience they will need to respond effectively to an FAD. Such proactive approaches are the mission of the Secure Food System (SFS; University of Minnesota; St. Paul, Minnesota USA). Methods: The SFS exercises were designed as educational activities based on avian influenza (AI) outbreaks in commercial poultry scenarios. These scenarios were created by subject matter experts and were based on epidemiology reports, risk pathway analyses, local industry practices, and site-specific circumstances. Target audiences of an exercise were the groups involved in FAD control: animal agriculture industry members; animal health regulators; and diagnosticians. Groups of industry participants seated together at tables represented fictional poultry premises and were guided by a moderator to respond to an onfarm situation within a simulated outbreak. The impact of SFS exercises was evaluated through interviews with randomized industry participants and selected table moderators. Descriptive statistics and qualitative analyses were performed on interview feedback. Results: Eleven SFS exercises occurred from December 2016 through October 2017 in multiple regions of the US. Exercises were conducted as company-wide, state-wide, or regional trainings. Nine were based on highly pathogenic avian influenza (HPAI) outbreaks and two focused on outbreaks of co-circulating HPAI and low pathogenicity avian influenza (LPAI). Poultry industry participants interviewed generally found attending an SFS exercise to be useful. The most commonly identified benefits of participation were its value to people without prior outbreak experience and knowledge gained about Continuity of Business (COB)-permitted movement. After completing an exercise, most participants evaluated their preparedness to respond to an outbreak as somewhat to very ready, and more than one-half reported their respective company or farms had discussions or changed actions due to participation. Conclusion: Evaluation feedback suggests the SFS exercises were an effective training method to supplement preparedness efforts for an AI outbreak. The concept of using multi-faceted scenarios and multiple education strategies during a tabletop exercise may be translatable to other emergency preparedness needs.Item Simulated Flock-Level Shedding Characteristics of Turkeys in Ten Thousand Bird Houses Infected with H7 Low Pathogenicity Avian Influenza Virus Strains(2021) Bonney, Peter J.; Malladi, Sasidhar; Ssematimba, Amos; Charles, Kaitlyn M. St.; Walz, Emily; Culhane, Marie R.; Halvorson, David A.; Cardona, Carol J.pathogenicity avian influenza virus (LPAIV) over time can help inform the type and timing of activities performed in response to a confirmed LPAIV-positive premises. To this end, we developed a mathematical model which allows us to estimate viral shedding by 10,000 turkey toms raised in commercial turkey production in the United States, and infected by H7 LPAIV strains. We simulated the amount of virus shed orally and from the cloaca over time, as well as the amount of virus in manure. In addition, we simulated the threshold cycle value (Ct) of pooled oropharyngeal swabs from birds in the infected flock tested by real-time reverse transcription polymerase chain reaction. The simulation model predicted that little to no shedding would occur once the highest threshold of seroconversion was reached. Substantial amounts of virus in manure (median 1.5 108 and 5.8 109; 50% egg infectious dose) were predicted at the peak. Lastly, the model results suggested that higher Ct values, indicating less viral shedding, are more likely to be observed later in the infection process as the flock approaches recovery.