Browsing by Author "Ateka, Elijah"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Exchanging and managing in-vitro elite germplasm to combat Cassava Brown Streak Disease (CBSD) and Cassava Mosaic Disease (CMD) in Eastern and Southern Africa(Food Security, 2018) Tumwegamire, Silver; Kanju, Edward; Legg, James; Shirima, Rudolph; Kombo, Salehe; Mkamilo, Geoffrey; Mtunda, Kiddo; Sichalwe, Karoline; Kulembeka, Heneriko; Ndyetabura, Innocent; Saleh, Haji; Kawuki, Robert; Alicai, Titus; Adiga, Gerald; Benesi, Ibrahim; Mhone, Albert; Zacarias, Anabela; Fenias Matsimbe, Sofrimento; Munga, Theresia; Ateka, Elijah; Navangi, Lynet; Narasegowda Maruthi, Midatharahally; Mwatuni, Francis; Ngundo, George; Mwangangi, Maureen; Mbugua, Edward; Ndunguru, Joseph; Rajabu, Cyprian; Mark, DeogratiusCassava varieties resistant to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are needed for the food and income security of the rural poor in eastern and southern Africa (ESA). The International Institute of Tropical Agriculture led five national cassava breeding programs (Malawi, Mozambique, Kenya, Tanzania and Uganda) in virus-cleaning and exchanging elite cassava germplasm resistant to both diseases. This paper documents the experiences and lessons learned from the process. Thirty-one clones (25 elite, two standard and four national) were submitted by the five breeding programs to the Natural Resources Institute and Kenya Plant Health Inspectorate Services for virus cleaning and indexing. Subsequently, ca 75 invitro virus-indexed plantlets per clone were sent to Genetic Technologies International Limited (GTIL), a private tissue culture (TC) lab in Kenya, and micro-propagated to produce ≥1500 plantlets. After fulfilling all the formal procedures of germplasm exchange between countries ≥300 plantlets per clone were sent to each partner country. National check clones susceptible to CMD/CBSD were sent only to their countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transferred to clean isolated sites for field multiplication. All the clones were cleaned of the viruses, except Tomo. The cleaning process was slow for F19-NL, NASE1, and Kibandameno and TC micro-propagation at GTIL was less efficient for Pwani, Tajirika, NASE1, and Okhumelela than for the other clones. Difficulties in cleaning recalcitrant clones affected the timeline for establishing the multi-site evaluation trials in target countries. The initiative is the one of the kind to successfully clean and exchange elite germplasm as a joint action to combat CBSD in ESA. Adequate preparation in terms of infrastructure and personnel are critical to successfully receiving and adapting the indexed in-vitro plants as new germplasm.Item Genetic diversity and geographic distribution of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) genotypes associated with cassava in East Africa(Ecology and Evolution, 2012) Mugerwa, Habibu; Rey, Marie E. C.; Alicai, Titus; Ateka, Elijah; Atuncha, Hellen; Ndunguru, Joseph; Sseruwagi, PeterThe genetic variability of whitefly (Bemisia tabaci) species, the vectors of cassava mosaic begomoviruses (CMBs) in cassava growing areas of Kenya, Tanzania, and Uganda, was investigated through comparison of partial sequences of the mitochondria cytochrome oxidase I (mtCOI) DNA in 2010/11. Two distinct species were obtained including sub-Saharan Africa 1 (SSA1), comprising of two sub-clades (I and II), and a South West Indian Ocean Islands (SWIO) species. Among the SSA1, sub-clade I sequences shared a similarity of 97.8–99.7% with the published Uganda 1 genotypes, and diverged by 0.3–2.2%. A pairwise comparison of SSA1 sub-clade II sequences revealed a similarity of 97.2–99.5% with reference southern Africa genotypes, and diverged by 0.5–2.8%. The SSA1 sub-clade I whiteflies were widely distributed in East Africa (EA). In comparison, the SSA1 sub-clade II whiteflies were detected for the first time in the EA region, and occurred predominantly in the coast regions of Kenya, southern and coast Tanzania. They occurred in low abundance in the Lake Victoria Basin of Tanzania and were widespread in all four regions in Uganda. The SWIO species had a sequence similarity of 97.2–97.7% with the published Reunion sequence and diverged by 2.3–2.8%. The SWIO whiteflies occurred in coast Kenya only. The sub-Saharan Africa 2 whitefly species (Ug2) that was associated with the severe CMD pandemic in Uganda was not detected in our studyItem Real time portable genome sequencing for global food security(F1000 Research, 2018) Boykin, Laura; Ghalab, Ammar; Rossitto De Marchi, Bruno; Savill, Anders; Wainaina, James M.; Kinene, Tonny; Lamb, Stephen; Rodrigues, Myriam; Kehoe, Monica; Ndunguru, Joseph; Tairo, Fred; Sseruwagi, Peter; Kayuki, Charles; Mark, Deogratius; Erasto, Joel; Bachwenkizi, Hilda; Alicai, Titus; Okao-Okuja, Geoffrey; Abridrabo, Phillip; Ogwok, Emmanuel; Osingada, John Francis; Akono, Jimmy; Ateka, Elijah; Muga, Brenda; Kiarie, SamuelCrop losses due to viral diseases and pests are major constraints on food security and income for millions of households in sub-Saharan Africa (SSA). Such losses can be reduced if plant diseases and pests are correctly diagnosed and identified early. Currently, accurate diagnosis for definitive identification of plant viruses and their vectors in SSA mostly relies on standard PCR and next generation sequencing technologies (NGS). However, it can take up to 6 months before results generated using these approaches are available. The long time taken to detect or identify viruses impedes quick, within-season decision-making necessary for early action, crop protection advice and disease control measures by farmers. This ultimately compounds the magnitude of crop losses and food shortages suffered by farmers. The MinION portable pocket DNA sequencer was used, to our knowledge globally for the first time, to sequence whole plant virus genomes. We used this technology to identify the begomoviruses causing the devastating cassava mosaic virus, which is ravaging smallholder farmers’ crops in sub-Saharan Africa.Item Tree Lab: Portable Genomics for Early Detection of Plant Viruses and Pests in Sub-Saharan Africa(Genes, 2019) Boykin, Laura M.; Sseruwagi, Peter; Alicai, Titus; Ateka, Elijah; Umar Mohammed, Ibrahim; Stanton, Jo-Ann L.; Kayuki, Charles; Mark, Deogratius; Fute, Tarcisius; Erasto, Joel; Bachwenkizi, Hilda; Muga, Brenda; Mumo, Naomi; Mwangi, Jenniffer; Abidrabo, Phillip; Okao-Okuja, Geofrey; Omuut, Geresemu; Akol, Jacinta; Apio, Hellen B.; Osingada, Francis; Kehoe, Monica A.; Eccles, David; Savill, Anders; Lamb, Stephen; Kinene, Tonny; Rawle, Christopher B.; Muralidhar, Abishek; Mayall, Kirsty; Tairo, Fred; Ndunguru, JosephIn this case study we successfully teamed the PDQeX DNA purification technology developed by MicroGEM, New Zealand, with the MinION and MinIT mobile sequencing devices developed by Oxford Nanopore Technologies to produce an e ective point-of-need field diagnostic system. The PDQeX extractsDNAusing a cocktail of thermophilic proteinases and cell wall-degrading enzymes, thermo-responsive extractor cartridges and a temperature control unit. This closed system delivers purified DNA with no cross-contamination. The MinIT is a newly released data processing unit that converts MinION raw signal output into nucleotide base called data locally in real-time, removing the need for high-specification computers and large file transfers from the field. All three devices are battery powered with an exceptionally small footprint that facilitates transport and setup. To evaluate and validate capability of the system for unbiased pathogen identification by real-time sequencing in a farmer’s field setting, we analysed samples collected from cassava plants grown by subsistence farmers in three sub-Sahara African countries (Tanzania, Uganda and Kenya). A range of viral pathogens, all with similar symptoms, greatly reduce yield or destroy cassava crops. Eight hundred (800) million people worldwide depend on cassava for food and yearly income, and viral diseases are a significant constraint to its production. Early pathogen detection at a molecular level has great potential to rescue crops within a single growing season by providing results that inform decisions on disease management, use of appropriate virus-resistant or replacement planting. This case study presented conditions of working in-field with limited or no access to mains power, laboratory infrastructure, Internet connectivity and highly variable ambient temperature. An additional challenge is that, generally, plant material contains inhibitors of downstream molecular processes making e ective DNA purification critical. We successfully undertook real-time on-farm genome sequencing of samples collected from cassava plants on three farms, one in each country. Cassava mosaic begomoviruses were detected by sequencing leaf, stem, tuber and insect samples. The entire process, from arrival on farm to diagnosis, including sample collection, processing and provisional sequencing results was complete in under 3 h. The need for accurate, rapid and on-site diagnosis grows as globalized human activity accelerates. This technical breakthrough has applications that are relevant to human and animal health, environmental management and conservation.Item Unusual occurrence of a DAG motif in the Ipomovirus Cassava brown streak virus and implications for its vector transmission(PLoS ONE, 2017) Ateka, Elijah; Alicai, Titus; Ndunguru, Joseph; Tairo, Fred; Sseruwagi, Peter; Kiarie, Samuel; Makori, Timothy; Kehoe, Monica A.; Boykin, Laura M.Cassava is the main staple food for over 800 million people globally. Its production in eastern Africa is being constrained by two devastating Ipomoviruses that cause cassava brown streak disease (CBSD); Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), with up to 100% yield loss for smallholder farmers in the region. To date, vector studies have not resulted in reproducible and highly efficient transmission of CBSV and UCBSV. Most virus transmission studies have used Bemisia tabaci (whitefly), but a maximum of 41% U/CBSV transmission efficiency has been documented for this vector. With the advent of next generation sequencing, researchers are generating whole genome sequences for both CBSV and UCBSV from throughout eastern Africa. Our initial goal for this study was to characterize U/CBSV whole genomes from CBSD symptomatic cassava plants sampled in Kenya. We have generated 8 new whole genomes (3 CBSV and 5 UCBSV) from Kenya, and in the process of analyzing these genomes together with 26 previously published sequences, we uncovered the aphid transmission associated DAG motif within coat protein genes of all CBSV whole genomes at amino acid positions 52±54, but not in UCBSV. Upon further investigation, the DAG motif was also found at the same positions in two other Ipomoviruses: Squash vein yellowing virus (SqVYV), Coccinia mottle virus (CocMoV). Until this study, the highly-conserved DAG motif, which is associated with aphid transmission was only noticed once, in SqVYV but discounted as being of minimal importance. This study represents the first comprehensive look at Ipomovirus genomes to determine the extent of DAG motif presence and significance for vector relations. The presence of this motif suggests that aphids could potentially be a vector of CBSV, SqVYV and Coc- Mov. Further transmission and ipomoviral protein evolutionary studies are needed to confirm this hypothesis.