Browsing by Author "Alicai, Titus"
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item African ancestry of New World, Bemisia tabaci-whitefly species(Scientific reports, 2018) Mugerwa, Habibu; Seal, Susan; Wang, Hua-Ling; Patel, Mitulkumar V.; Kabaalu, Richard; Omongo, Christopher A.; Alicai, Titus; Tairo, Fred; Ndunguru, Joseph; Sseruwagi, Peter; Colvin, JohnBemisia tabaci whitefly species are some of the world’s most devastating agricultural pests and plant-virus disease vectors. Elucidation of the phylogenetic relationships in the group is the basis for understanding their evolution, biogeography, gene-functions and development of novel control technologies. We report here the discovery of five new Sub-Saharan Africa (SSA) B. tabaci putative species, using the partial mitochondrial cytochrome oxidase 1 gene: SSA9, SSA10, SSA11, SSA12 and SSA13. Two of them, SSA10 and SSA11 clustered with the New World species and shared 84.8‒86.5% sequence identities. SSA10 and SSA11 provide new evidence for a close evolutionary link between the Old and New World species. Re-analysis of the evolutionary history of B. tabaci species group indicates that the new African species (SSA10 and SSA11) diverged from the New World clade c. 25 million years ago. The new putative species enable us to: (i) re-evaluate current models of B. tabaci evolution, (ii) recognise increased diversity within this cryptic species group and (iii) re-estimate divergence dates in evolutionary time.Item African Basil (Ocimum gratissimum) Is a Reservoir of Divergent Begomoviruses in Uganda(Plant disease, 2020) Mollel, Happyness G.; Ndunguru, Joseph; Sseruwagi, Peter; Alicai, Titus; Colvin, John; Navas-Castillo, Jesus; Fiallo-Oliv, ElviraBegomoviruses are plant viruses that cause major losses to many economically important crops. Although they are poorly understood, begomoviruses infecting wild plants may have an important role as reservoirs in the epidemiology of viral diseases. This study reports the discovery and genomic characterization of three novel bipartite begomoviruses from wild and cultivated African basil (Ocimum gratissimum) plants collected in Uganda, East Africa. Based on the symptoms shown by the infected plants, the names proposed for these viruses are Ocimum yellow vein virus (OcYVV), Ocimum mosaic virus (OcMV), and Ocimum golden mosaic virus (OcGMV). Genome and phylogenetic analyses suggest that DNA-A of OcGMV is mostly related to begomoviruses infecting tomato in Africa, whereas those of OcYVV and OcMV are closely related to one another and highly divergent within the Old World begomoviruses. The DNA-A of all characterized begomovirus isolates are of a recombinant nature, revealing the role of recombination in the evolution of these begomoviruses. The viruses characterized here are the first identified in O. gratissimum and the first in Ocimum spp. in the African continent and could have important epidemiological consequences for cultivated basils and other important crops.Item African Cassava Whitefly, Bemisia tabaci, Resistance in African and South American Cassava Genotypes(Journal of integrative agriculture, 2012) Omongo, Christopher A.; Kawuki, Robert; Bellotti, Antony C.; Alicai, Titus; Baguma, Yona; Maruthi, M. N.; Bua, Anton; Colvin, JohnThe whitefly, Bemisia tabaci, is a major pest of cassava, particularly in Africa where it is responsible both for the transmission of plant viruses and, increasingly, for direct damage due to feeding by high populations. To date, there have been no practical solutions to combat this emerging problem, due to the inability of the subsistence farmers that grow cassava to afford expensive inputs such as insecticides. A programme of research was carried out linking institutes in Africa, the UK and South America, to identify possible resistance sources in cassava to the whitefly, Bemisia tabaci. The South American genotype MEcu 72 and several Ugandan cassava landraces including Ofumba Chai, Nabwire 1 and Mercury showed good levels of resistance to B. tabaci. Field and screen-house experiments showed that all of the improved, high-yielding cassava mosaic disease (CMD) resistant cassava genotypes assessed were highly susceptible to B. tabaci and supported high populations of all life stages. These data support the hypothesis that the continuing high populations of cassava B. tabaci in Uganda are due, in part, to the widespread adoption of CMD-resistant cassava varieties during the CMD pandemic. They also show that the whitefly, Aleurotrachelus socialis, resistance present in the South American cassava genotypes could have broader applicability in the Old World.Item Artificial microRNA-derived resistance to Cassava brown streak disease(Journal of virological methods, 2016) Wagaba, Henry; Patil, Basavaprabhu L.; Mukasa, Settumba; Alicai, Titus; Fauquet, Claude M.; Taylor, Nigel J.Artificial miRNAs (amiRNA) were generated targeting conserved sequences within the genomes of the two causal agents of Cassava brown streak disease (CBSD): Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Transient expression studies on ten amiRNAs targeting 21 nt conserved sequences of P1(CBSV and UCBSV), P3(CBSV and UCBSV), CI(UCBSV), NIb(CBSV and UCBSV), CP(UCBSV) and the un-translated region (3 -UTR) were tested in Nicotiana benthamiana. Four out of the ten amiRNAs expressed the corresponding amiRNA at high levels. Transgenic N. benthamiana plants were developed for the four amiRNAs targeting the P1 and NIb genes of CBSV and the P1 and CP genes of UCBSV and shown to accumulate miRNA products. Transgenic plants challenged with CBSV and UCBSV isolates showed resistance levels that ranged between ∼20–60% against CBSV and UCBSV and correlated with expression levels of the transgenically derived miRNAs. MicroRNAs targeting P1 and NIb of CBSV showed protection against CBSV and UCBSV, while amiRNAs targeting the P1 and CP of UCBSV showed protection against UCBSV but were less efficient against CBSV. These results indicate a potential application of amiRNAs for engineering resistance to CBSD-causing viruses in cassava.Item Cassava brown streak disease: historical timeline, current knowledge and future prospects(Molecular Plant Pathology, 2018) Tomlinson, Katie R.; Bailey, Andy M.; Alicai, Titus; Seal, Sue; Foster, Gary D.Cassava is the second most important staple food crop in terms of per capita calories consumed in Africa and holds potential for climate change adaptation. Unfortunately, productivity in East and Central Africa is severely constrained by two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). CBSD was first reported in 1936 from northeast Tanzania. For approximately 70 years, CBSD was restricted to coastal East Africa and so had a relatively low impact on food security compared with CMD. However, at the turn of the 21st century, CBSD re-emerged further inland, in areas around Lake Victoria, and it has since spread through many East and Central African countries, causing high yield losses and jeopardizing the food security of subsistence farmers. This recent re-emergence has attracted intense scientific interest, with studies shedding light on CBSD viral epidemiology, sequence diversity, host interactions and potential sources of resistance within the cassava genome. This review reflects on 80 years of CBSD research history (1936– 2016) with a timeline of key events. We provide insights into current CBSD knowledge, management efforts and future prospects for improved understanding needed to underpin effective control and mitigation of impacts on food security.Item Cassava brown streak virus Ham1 protein hydrolyses mutagenic nucleotides and is a necrosis determinant(Molecular plant pathology, 2019) Tomlinson, Katie R.; Pablo-Rodriguez, José Luis; Bunawan, Hamidun; Nanyiti, Sarah; Green, Patrick; Miller, Josie; Alicai, Titus; Seal, Susan E.; Bailey, Andy M.; Foster, Gary D.Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/ CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.Item Cassava brown streak virus has a rapidly evolving genome: implications for virus speciation, variability, diagnosis and host resistance(Scientific reports, 2016) Alicai, Titus; Ndunguru, Joseph; Sseruwagi, Peter; Tairo, Fred; Okao-Okuja, Geoffrey; Nanvubya, Resty; Kiiza, Lilliane; Kubatko, Laura; Kehoe, Monica A.; Boykin, Laura M.Cassava is a major staple food for about 800 million people in the tropics and sub-tropical regions of the world. Production of cassava is significantly hampered by cassava brown streak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The disease is suppressing cassava yields in eastern Africa at an alarming rate. Previous studies have documented that CBSV is more devastating than UCBSV because it more readily infects both susceptible and tolerant cassava cultivars, resulting in greater yield losses. Using whole genome sequences from NGS data, we produced the first coalescent-based species tree estimate for CBSV and UCBSV. This species framework led to the finding that CBSV has a faster rate of evolution when compared with UCBSV. Furthermore, we have discovered that in CBSV, nonsynonymous substitutions are more predominant than synonymous substitution and occur across the entire genome. All comparative analyses between CBSV and UCBSV presented here suggest that CBSV may be outsmarting the cassava immune system, thus making it more devastating and harder to control.Item Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses(Virus research, 2016) Ogwok, Emmanuel; Ilyas, Muhammad; Alicai, Titus; Rey, Marie E.C.; Taylor, Nigel J.Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21-24 nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21 nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5’-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD.Item Desmodium mottle virus, the first legumovirus (genus Begomovirus) from East Africa(Archives of virology, 2017) Mollel, Happyness G.; Sseruwagi, Peter; Ndunguru, Joseph; Alicai, Titus; Colvin, John; Navas-Castillo, Jesu´ s; Fiallo-Olive, ElviraA novel bipartite legumovirus (genus Begomovirus, family Geminiviridae), that naturally infects the wild leguminous plant Desmodium sp. in Uganda, was molecularly characterized and named Desmodium mottle virus. The highest nucleotide identities for DNA-A, obtained from two field-collected samples, were 79.9% and 80.1% with the legumovirus, soybean mild mottle virus. DNA-B had the highest nucleotide identities (65.4% and 66.4%) with a typical non-legumovirus Old World begomovirus, African cassava mosaic virus. This is the first report of a legumovirus in East Africa and extends the known diversity of begomoviruses found infecting wild plants in this continent.Item Efficient conditions for in vitro establishment and regeneration of disease-free Ugandan farmer-preferred cassava genotypes(African Journal of Biotechnology, 2021) Apio, Hellen B.; Alicai, Titus; Ogwok, EmmanuelCassava (Manihot esculenta Crantz) is majorly devastated by two viral diseases, cassava brown streak disease (CBSD) and cassava mosaic disease (CMD), resulting in 100% yield loss. Being a clonal plant, nodal cuttings (NC) and shoot apical meristems (SAMs) are the best explants for production of disease free planting materials. In this study, NCs and SAMs were used to determine reliable indicators for successful in vitro establishment of cassava. Eight cassava genotypes were used for the study. Leaf samples were collected from 30 stakes of each of the eight genotypes planted in the screen house. The leaf samples were pooled and screened for presence and/or absence of CBSD and CMD by PCR using virus specific primers. Nodal cuttings were excised from screen house grown plants, surface sterilized to rid-off contaminants and established on Murashige and Skoog (MS) Medium. Using the sprouted stakes, 5-mm sized SAMs were excised, surface sterilized and reduced to 0.5-1 and 2-3 mm sizes. The SAMs were established on MS medium with varying concentrations of plant growth regulators (0.5, 1, 2) ml/L Benzylaminopurine (BAP) and (2, 4) ml/L Naphthalene acetic acid (NAA), Kinetin (K) and BAP respectively. PCR results revealed the pooled leaf samples were free of both CBSD and CMD for all genotypes. Establishment and regeneration of NCs was possible with MS medium for all genotypes. For the SAMs, the concentrations of (2, 4) ml/LBAP followed by 2 ml/LNAA facilitated their establishment and regeneration in comparison to KIN.SAMs of 2-3 mm sizes regenerated better than 0.5 - 1 mm size. Both NCs and SAMs of the different genotypes produced leaves, nodes, roots and there was an increase in plant length. These parameters are critical indicators for in vitro establishment and regeneration of cassava.Item Efficient CRISPR/Cas9 Genome Editing of Phytoene desaturase in Cassava(Frontiers in Plant Science, 2017) Odipio, John; Alicai, Titus; Nusinow, Dmitri; Bart, Rebecca; Ingelbrecht, Ivan; Taylor, NigelCRISPR/Cas9 has become a powerful genome-editing tool for introducing genetic changes into crop species. In order to develop capacity for CRISPR/Cas9 technology in the tropical staple cassava (Manihot esculenta), the Phytoene desaturase (MePDS) gene was targeted in two cultivars using constructs carrying gRNAs targeting two sequences within MePDS exon 13. After Agrobacterium-mediated delivery of CRISPR/Cas9 reagents into cassava cells, both constructs induced visible albino phenotypes within cotyledon-stage somatic embryos regenerating on selection medium and the plants regenerated therefrom. A total of 58 (cv. 60444) and 25 (cv. TME 204) plant lines were recovered, of which 38 plant lines (19 from each cultivar) were analyzed for mutagenesis. The frequency of plant lines showing albino phenotype was high, ranging from 90 to 100% in cv. TME 204. Observed albino phenotypes were comprised of full albinos devoid of green tissue and chimeras containing a mixture of white and green tissues. Sequence analysis revealed that 38/38 (100%) of the plant lines examined carried mutations at the targeted MePDS site, with insertions, deletions, and substitutions recorded. One putatively mono-allelic homozygous line (1/19) was found from cv. 60444, while 1 (1/19) and 4 (4/19) putatively bi-allelic homozygous lines were found in 60444 and TME204, respectively. The remaining plant lines, comprised mostly of the chimeras, were found to be putatively heterozygous. We observed minor (1 bp) nucleotide substitutions and or deletions upstream of the 50 and or downstream of the 30 targeted MePDS region. The data reported demonstrates that CRISPR/Cas9-mediated genome editing of cassava is highly efficient and relatively simple, generating multi-allelic mutations in both cultivars studied. Modification of MePDS described here generates visually detectable mutated events in a relatively short time frame of 6–8 weeks, and does not require sequencing to confirm editing at the target. It therefore provides a valuable platform to facilitate rapid assessment and optimization of CRISPR/Cas9 and other genome-editing technologies in cassava.Item Efficient transmission of Cassava brown streak disease viral pathogens by chip bud grafting(BMC Research, 2013) Wagaba, Henry; Beyene, Getu; Trembley, Cynthia; Alicai, Titus; Fauquet, Claude M.; Taylor, Nigel J.Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Findings: Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6–8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2–6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12–14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10–14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). Conclusions: The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and can be inoculated in a controlled manner with CBSV and UCBSV, either singly or together. Disease symptoms develop rapidly, allowing better studies of interactions between these viral pathogens, their movement within shoot and root systems, and how they induce their destructive disease symptoms.Item Eleven years of breeding efforts to combat cassava brown streak disease(Breeding Science, 2016) Sezi Kawuki, Robert; Kaweesi, Tadeo; Esuma, Williams; Pariyo, Anthony; Kayondo, Ismail Siraj; Ozimati, Alfred; Kyaligonza, Vincent; Abaca, Alex; Orone, Joseph; Tumuhimbise, Robooni; Nuwamanya, Ephraim; Abidrabo, Philip; Amuge, Teddy; Ogwok, Emmanuel; Okao, Geoffrey; Wagaba, Henry; Adiga, Gerald; Alicai, Titus; Omongo, Christopher; Bua, Anton; Ferguson, Morag; Kanju, Edward; Baguma, YonaCassava (Manihot esculenta Crantz) production is currently under threat from cassava brown streak disease (CBSD), a disease that is among the seven most serious obstacles to world’s food security. Three issues are of significance for CBSD. Firstly, the virus associated with CBSD, has co-evolved with cassava outside its center of origin for at least 90 years. Secondly, that for the last 74 years, CBSD was only limited to the low lands. Thirdly, that most research has largely focused on CBSD epidemiology and virus diversity. Accordingly, this paper focuses on CBSD genetics and/or breeding and hence, presents empirical data generated in the past 11 years of cassava breeding in Uganda. Specifically, this paper provides: 1) empirical data on CBSD resistance screening efforts to identify sources of resistance and/or tolerance; 2) an update on CBSD resistance population development comprising of full-sibs, half-sibs and S1 families and their respective field performances; and 3) insights into chromosomal regions and genes involved in CBSD resistance based on genome wide association analysis. It is expected that this information will provide a foundation for harmonizing on-going CBSD breeding efforts and consequently, inform the future breeding interventions aimed at combating CBSD.Item Exchanging and managing in-vitro elite germplasm to combat Cassava Brown Streak Disease (CBSD) and Cassava Mosaic Disease (CMD) in Eastern and Southern Africa(Food Security, 2018) Tumwegamire, Silver; Kanju, Edward; Legg, James; Shirima, Rudolph; Kombo, Salehe; Mkamilo, Geoffrey; Mtunda, Kiddo; Sichalwe, Karoline; Kulembeka, Heneriko; Ndyetabura, Innocent; Saleh, Haji; Kawuki, Robert; Alicai, Titus; Adiga, Gerald; Benesi, Ibrahim; Mhone, Albert; Zacarias, Anabela; Fenias Matsimbe, Sofrimento; Munga, Theresia; Ateka, Elijah; Navangi, Lynet; Narasegowda Maruthi, Midatharahally; Mwatuni, Francis; Ngundo, George; Mwangangi, Maureen; Mbugua, Edward; Ndunguru, Joseph; Rajabu, Cyprian; Mark, DeogratiusCassava varieties resistant to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are needed for the food and income security of the rural poor in eastern and southern Africa (ESA). The International Institute of Tropical Agriculture led five national cassava breeding programs (Malawi, Mozambique, Kenya, Tanzania and Uganda) in virus-cleaning and exchanging elite cassava germplasm resistant to both diseases. This paper documents the experiences and lessons learned from the process. Thirty-one clones (25 elite, two standard and four national) were submitted by the five breeding programs to the Natural Resources Institute and Kenya Plant Health Inspectorate Services for virus cleaning and indexing. Subsequently, ca 75 invitro virus-indexed plantlets per clone were sent to Genetic Technologies International Limited (GTIL), a private tissue culture (TC) lab in Kenya, and micro-propagated to produce ≥1500 plantlets. After fulfilling all the formal procedures of germplasm exchange between countries ≥300 plantlets per clone were sent to each partner country. National check clones susceptible to CMD/CBSD were sent only to their countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transferred to clean isolated sites for field multiplication. All the clones were cleaned of the viruses, except Tomo. The cleaning process was slow for F19-NL, NASE1, and Kibandameno and TC micro-propagation at GTIL was less efficient for Pwani, Tajirika, NASE1, and Okhumelela than for the other clones. Difficulties in cleaning recalcitrant clones affected the timeline for establishing the multi-site evaluation trials in target countries. The initiative is the one of the kind to successfully clean and exchange elite germplasm as a joint action to combat CBSD in ESA. Adequate preparation in terms of infrastructure and personnel are critical to successfully receiving and adapting the indexed in-vitro plants as new germplasm.Item Expansion of the cassava brown streak pandemic in Uganda revealed by annual field survey data for 2004 to 2017(Scientific Data, 2019) Alicai, Titus; Szyniszewska, Anna M.; Omongo, Christopher A .; Abidrabo, Phillip; Okao-Okuja, Geoffrey; Baguma, Yona; Ogwok, Emmanuel; Kawuki, Robert; Esuma, Williams; Tairo, Fred; Bua, Anton; Legg, James P.; Stutt, Richard O. J. H.; Godding, David; Sseruwagi, Peter; Ndunguru, Joseph; Gilligan, Christopher A.Cassava brown streak disease (CBSD) is currently the most devastating cassava disease in eastern, central and southern Africa affecting a staple crop for over 700 million people on the continent. A major outbreak of CBSD in 2004 near Kampala rapidly spread across Uganda. In the following years, similar CBSD outbreaks were noted in countries across eastern and central Africa, and now the disease poses a threat to West Africa including Nigeria - the biggest cassava producer in the world. A comprehensive dataset with 7,627 locations, annually and consistently sampled between 2004 and 2017 was collated from historic paper and electronic records stored in Uganda. The survey comprises multiple variables including data for incidence and symptom severity of CBSD and abundance of the whitefly vector (Bemisia tabaci). This dataset provides a unique basis to characterize the epidemiology and dynamics of CBSD spread in order to inform disease surveillance and management. We also describe methods used to integrate and verify extensive field records for surveys typical of emerging epidemics in subsistence crops.Item Field Level RNAi-Mediated Resistance to Cassava Brown Streak Disease across Multiple Cropping Cycles and Diverse East African Agro-Ecological Locations(Frontiers in plant science, 2017) Wagaba, Henry; Beyene, Getu; Aleu, Jude; Odipio, John; Okao-Okuja, Geoffrey; Deepika Chauhan, Raj; Munga, Theresia; Obiero, Hannington; Halsey, Mark E.; Ilyas, Muhammad; Raymond, Peter; Bua, Anton; Taylor, Nigel J.; Miano, Douglas; Alicai, TitusCassava brown streak disease (CBSD) presents a serious threat to cassava production in East and Central Africa. Currently, no cultivars with high levels of resistance to CBSD are available to farmers. Transgenic RNAi technology was employed to combat CBSD by fusing coat protein (CP) sequences from Ugandan cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) to create an inverted repeat construct (p5001) driven by the constitutive Cassava vein mosaic virus promoter. Twenty-five plant lines of cultivar TME 204 expressing varying levels of small interfering RNAs (siRNAs) were established in confined field trials (CFTs) in Uganda and Kenya. Within an initial CFT at Namulonge, Uganda, non-transgenic TME 204 plants developed foliar and storage root CBSD incidences at 96–100% by 12 months after planting. In contrast, 16 of the 25 p5001 transgenic lines showed no foliar symptoms and had less than 8% of their storage roots symptomatic for CBSD. A direct positive correlation was seen between levels of resistance to CBSD and expression of transgenic CP-derived siRNAs. A subsequent CFT was established at Namulonge using stem cuttings from the initial trial. All transgenic lines established remained asymptomatic for CBSD, while 98% of the non-transgenic TME 204 stake-derived plants developed storage roots symptomatic for CBSD. Similarly, very high levels of resistance to CBSD were demonstrated by TME 204 p5001 RNAi lines grown within a CFT over a full cropping cycle at Mtwapa, coastal Kenya. Sequence analysis of CBSD causal viruses present at the trial sites showed that the transgenic lines were exposed to both CBSV and UCBSV, and that the sequenced isolates shared >90% CP identity with transgenic CP sequences expressed by the p5001 inverted repeat expression cassette. These results demonstrate very high levels of field resistance to CBSD conferred by the p5001 RNAi construct at diverse agro-ecological locations, and across the vegetative cropping cycle.Item Genetic diversity and geographic distribution of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) genotypes associated with cassava in East Africa(Ecology and Evolution, 2012) Mugerwa, Habibu; Rey, Marie E. C.; Alicai, Titus; Ateka, Elijah; Atuncha, Hellen; Ndunguru, Joseph; Sseruwagi, PeterThe genetic variability of whitefly (Bemisia tabaci) species, the vectors of cassava mosaic begomoviruses (CMBs) in cassava growing areas of Kenya, Tanzania, and Uganda, was investigated through comparison of partial sequences of the mitochondria cytochrome oxidase I (mtCOI) DNA in 2010/11. Two distinct species were obtained including sub-Saharan Africa 1 (SSA1), comprising of two sub-clades (I and II), and a South West Indian Ocean Islands (SWIO) species. Among the SSA1, sub-clade I sequences shared a similarity of 97.8–99.7% with the published Uganda 1 genotypes, and diverged by 0.3–2.2%. A pairwise comparison of SSA1 sub-clade II sequences revealed a similarity of 97.2–99.5% with reference southern Africa genotypes, and diverged by 0.5–2.8%. The SSA1 sub-clade I whiteflies were widely distributed in East Africa (EA). In comparison, the SSA1 sub-clade II whiteflies were detected for the first time in the EA region, and occurred predominantly in the coast regions of Kenya, southern and coast Tanzania. They occurred in low abundance in the Lake Victoria Basin of Tanzania and were widespread in all four regions in Uganda. The SWIO species had a sequence similarity of 97.2–97.7% with the published Reunion sequence and diverged by 2.3–2.8%. The SWIO whiteflies occurred in coast Kenya only. The sub-Saharan Africa 2 whitefly species (Ug2) that was associated with the severe CMD pandemic in Uganda was not detected in our studyItem Genetic Diversity in Napier Grass (Pennisetum purpureum) Assessed by SSR Markers(Journal of Agricultural Science, 2015) Kawube, Geofrey; Alicai, Titus; Wanjala, Bramwel; Njahira, Moses; Awalla, Juma; Skilton, RobertUnderstanding of genetic diversity among Napier grass is very important for selection and improvement of Napier grass breeding population. This study determined the genetic diversity among the farmer preferred, wild (local) and selected ILRI gene-bank Napier grass clones using 23 SSR markers selected from pearl millet, maize and sorghum. The results indicated polymorphism among the SSR markers, revealing a total of 339 alleles of which 27.1% alleles were unique, occurring either only in local, farmers preferred or ILRI clones. Similarly, genetic diversity and observed heterozygosity were highest in the local than in farmers’ preferred and least in the ILRI gene-bank clones. The clones clustered in two groups with a few overlaps, although most of the farmer’s grown Napier grass clones grouped with those from ILRI genebank and clone P99, emphasizing their genetic relatedness. Therefore, the unique alleles revealed in the local clones may be associated with adaptability to local environments. These alleles could, therefore, be exploited for genetic improvement of the farmer preferred Napier grass.Item Genetic diversity of whitefly (Bemisia spp.) on crop and uncultivated plants in Uganda: implications for the control of this devastating pest species complex in Africa(Journal of pest science, 2021) Mugerwa, Habibu; Colvin, John; Alicai, Titus; Omongo, Christopher A.; Kabaalu, Richard; Visendi, Paul; Sseruwagi, Peter; Seal, Susan E.Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a countrywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 sequences (651 bp) in the 3′ barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative species and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL (30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy and a climate that enables the continuous presence of crop and uncultivated plant hosts.Item Genetic Gains for Yield and Virus Disease Resistance of Cassava Varieties Developed Over the Last Eight Decades in Uganda(Frontiers in Plant Science, 2021) Manze, Francis; Rubaihayo, Patrick; Ozimati, Alfred; Gibson, Paul; Esuma, Williams; Bua, Anton; Alicai, Titus; Omongo, Chris; Kawuki, Robert S.Achieving food security for an ever-increasing human population requires faster development of improved varieties. To this end, assessment of genetic gain for key traits is important to inform breeding processes. Despite the improvements made to increase production and productivity of cassava in Uganda at research level, there has been limited effort to quantify associated genetic gains. Accordingly, a study was conducted in Uganda to assess whether or not genetic improvement was evident in selected cassava traits using cassava varieties that were released from 1940 to 2019. Thirty-two varieties developed during this period, were evaluated simultaneously in three major cassava production zones; central (Namulonge), eastern (Serere), and northern (Loro). Best linear unbiased predictors (BLUPs) of the genotypic value for each clone were obtained across environments and regressed on order of release year to estimate annual genetic gains. We observed that genetic trends were mostly quadratic. On average, cassava mosaic disease (CMD) resistance increased by 1.9% per year, while annual genetic improvements in harvest index (0.0%) and fresh root yield (5 kg per ha or 0.03% per ha) were non-substantial. For cassava brown streak disease (CBSD) resistance breeding which was only initiated in 2003, average annual genetic gains for CBSD foliar and CBSD root necrosis resistances were 2.3% and 1.5%, respectively. It’s evident that cassava breeding has largely focused on protecting yield against diseases. This underpins the need for simultaneous improvement of cassava for disease resistance and high yield for the crop to meet its current and futuristic demands for food and industry.
- «
- 1 (current)
- 2
- 3
- »