Properties of Preconditioners for Robust Linear Regression

dc.contributor.authorBaryamureeba, V.
dc.contributor.authorSteihaug, T.
dc.date.accessioned2022-07-18T10:33:20Z
dc.date.available2022-07-18T10:33:20Z
dc.date.issued2000
dc.description.abstractIn this paper, we consider solving the robust linear regression problem y = Ax + ∈ by an inexact Newton method and an iteratively reweighted least squares method. We show that each of these methods can be combined with the preconditioned conjugate gradient least square algorithm to solve large, sparse systems of linear equations efficiently. We consider the constant preconditioner ATA and preconditioners based on low-rank updates and downdates of existing matrix factorizations. Numerical results are given to demonstrate the effectiveness of these preconditioners.en_US
dc.identifier.citationBaryamureeba, V., & Steihaug, T. (2000). On the properties of preconditioners for robust linear regression. Department of Informatics, University of Bergen. Fountain Publishers. ISBN 978-9970-02-730-9en_US
dc.identifier.isbn978-9970-02-730-9
dc.identifier.urihttps://nru.uncst.go.ug/handle/123456789/4220
dc.language.isoenen_US
dc.publisherFountain Publishersen_US
dc.subjectPropertiesen_US
dc.subjectPreconditionersen_US
dc.subjectRobust Linear Regressionen_US
dc.titleProperties of Preconditioners for Robust Linear Regressionen_US
dc.typeBook chapteren_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Properties of Preconditioners for Robust.pdf
Size:
5.11 MB
Format:
Adobe Portable Document Format
Description:
Book Chapter
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: