A Combined PDR and Wi-Fi Trilateration Algorithm for Indoor Localization

dc.contributor.authorAlwin, Poulose
dc.contributor.authorOdongo, Steven Eyobu
dc.contributor.authorHan, Dong Seog
dc.date.accessioned2023-02-19T16:40:16Z
dc.date.available2023-02-19T16:40:16Z
dc.date.issued2019
dc.description.abstractIndoor localization using Wi-Fi or pedes- trian dead reckoning (PDR) has several limitations in terms of Wi-Fi signal fluctuations and PDR drift errors. To overcome these limitations, we propose a sensor fusion framework for Wi-Fi and PDR systems. The pro- posed sensor fusion will overcome the PDR drift errors by analysing the Wi-Fi signal strength and the PDR results will compensate the Wi-Fi signal fluctuations. Based on the experiments conducted, results show that the proposed fusion indoor positioning algorithm shows high position accuracy over Wi-Fi localization and PDR systems when used independently. Our proposed combined position estimation algorithm achieves an improved average localization accuracy of 1.6 m when compared to the Wi-Fi and PDR systems when used independently.en_US
dc.identifier.citationPoulose, A., Eyobu, O. S., & Han, D. S. (2019, February). A combined PDR and Wi-Fi trilateration algorithm for indoor localization. In 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 072-077). IEEE.en_US
dc.identifier.isbn978-1-5386-7822-0
dc.identifier.urihttps://nru.uncst.go.ug/handle/123456789/7883
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectIndoor localizationen_US
dc.subjectWi-Fien_US
dc.subjectSmart phoneen_US
dc.subjectQuaternionen_US
dc.subjectKalman filteren_US
dc.subjectSensor fusionen_US
dc.subjectPedes- trian dead reckoning (PDR)en_US
dc.subjectAndroid-based smart- phoneen_US
dc.subjectTrilaterationen_US
dc.subjectRSSIen_US
dc.titleA Combined PDR and Wi-Fi Trilateration Algorithm for Indoor Localizationen_US
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1109@ICAIIC.2019.8669059.pdf
Size:
524.18 KB
Format:
Adobe Portable Document Format
Description:
Proceedings
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: