Show simple item record

dc.contributor.authorBaryamureeba, Venansius
dc.contributor.authorSteihaug, Trond
dc.contributor.authorEl Ghami, Mohamed
dc.date.accessioned2022-07-17T15:10:08Z
dc.date.available2022-07-17T15:10:08Z
dc.date.issued2018
dc.identifier.citationBaryamureeba, V., Steihaug, T., & El Ghami, M. (2018). A REVIEW OF TERMINATION RULES OF AN INEXACT PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING PROBLEMS. Investigación Operacional, 39(3), 480-494.en_US
dc.identifier.urihttp://www.invoperacional.uh.cu/index.php/InvOp/article/viewFile/621/583
dc.identifier.urihttps://nru.uncst.go.ug/handle/123456789/4209
dc.description.abstractIn this paper we apply the Inexact Newton theory on the perturbed KKT-conditions that are derived from the Karush-Kuhn-Tucker optimality conditions for the standard linear optimization problem. We discuss different formulations and accuracy requirements for the linear systems and show global convergence properties of the method.en_US
dc.language.isoenen_US
dc.publisherInvestigación Operacionalen_US
dc.subjectGlobal convergenceen_US
dc.subjectInexact search directionen_US
dc.subjectInfeasible interior point algorithmen_US
dc.subjectLinear optimizationen_US
dc.subjectPrimal-dualen_US
dc.titleA Review of Termination Rules of an Inexact Primal-Dual Interior Point Method for Linear Programming Problemsen_US
dc.typeBook chapteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record