Engineering and Technology
Permanent URI for this collection
Browse
Browsing Engineering and Technology by Subject "Chemical vapour deposition"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Optimisation of the synthesis of ZrC coatings in a radio frequency induction-heating chemical vapour deposition system using response surface methodology(Thin Solid Films, 2017) Biira, S.; Crouse, P. L.; Bissett, H.; Alawada, B. A. B; Hlatshwayo, T. T.; Nel, J. T.; Malherbe, J. B.A chemical vapour deposition process using radio frequency induction heating operating at atmospheric pressure was developed for the deposition of ZrC coatings. The precursors utilised in this process were zirconium tetrachloride and methane as zirconium and carbon sources respectively, in an excess of hydrogen. Additionally, a stream of argon was used to, first, remove oxygen from the reactor and then to sweep the vapourised ZrCl4 at 300 °C to the reaction chamber. The ZrC coatings were deposited on graphite substrates at substrate temperatures in the range of 1200 °C–1600 °C. The molar ratio of CH4/ZrCl4 was varied from 6.04 to 24.44. Before the start of the deposition process, thermodynamic feasibility analysis for the growth of ZrC at atmospheric pressure was also carried out. Response surface methodology was applied to optimise the process parameters for the deposition of ZrC coatings. A central composite design was used to investigate the effects of temperature and molar ratio of CH4/ZrCl4 on the growth rate, atomic ratio of C/Zr and crystallite size of ZrC coatings. Quadratic statistical models for growth rate and crystallite size were established. The atomic ratio of C/Zr followed a linear trend. It was found that an increase in substrate temperature and CH4/ZrCl4 ratio resulted in increased growth rate of ZrC coatings. The carbon content (and concomitantly the atomic ratio of C/Zr) in the deposited coatings increased with temperature and molar ratio of CH4/ZrCl4. The substrate temperature of 1353.3 °C and the CH4/ZrCl4 molar ratio of 10.41were determined as the optimal condition for growing near-stoichiometry ZrC coatings. The values were 1.03, 6.05 μm/h and 29.8 nm for C/Zr atomic percentage ratio, growth rate and average crystallite size respectivelyItem The role of ZrCl4 partial pressure on the growth characteristics of chemical vapour deposited ZrC layers(Ceramics International, 2017) Biira, S.; Crouse, P.L.; Bissett, H.; Hlatshwayo, T.T.; Njoroge, E.G.; Nel, J.T.; Ntsoane, T.P.; Malherbe, J.B.ZrC layers were deposited in a chemical vapour deposition (CVD) reactor on graphite substrates using a ZrCl4- Ar-CH4-H2 precursor mixture. The deposition was conducted at different ZrCl4 partial pressures at a constant substrate temperature of 1400 °C for 2 h at atmospheric pressure. The deposited ZrC layers were characterised using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The effect of ZrCl4 partial pressure on the growth rate, microstructure and surface morphology of the deposited layers was studied. The ZrCl4 partial pressure was manipulated by changing the flow rate of the argon carrier gas through the sublimation chamber. The boundary layer thickness decreased as ZrCl4 partial pressures increased due increased argon flows. The increased ZrCl4 partial pressure increased the growth rate of ZrC layers linearly. It was found that the transport process of the source materials was laminar and forced convection flow. The flow process of source materials through the boundary layer to the reacting surface was also illustrated using a model. The average crystallite size increased with ZrCl4 partial pressures, whereas the lattice parameter, lattice strain and dislocation density decreased as ZrCl4 partial pressure increased. The surface morphology of the asdeposited ZrC layers varied with the ZrCl4 partial pressure. The size of crystals grew larger and the cavities surrounding them decreased in number and size as the ZrCl4 partial pressure increased.