Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhong, Dong-Huo"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A microwell pattern for C17.2 cell aggregate formation with concave cylindrical surface induced cell peeling
    (Biomaterials, 2014) Zhang, Li-Guang; Zhong, Dong-Huo; Zhang, Yiguo; Li, Chen-Zhong; Kisaalita, William S.; Wu, Ze-Zhi
    We have developed a polydimethylsiloxane (PDMS) pattern with arrays of microwells for the formation of multicellular aggregates by C17.2 neural stem cells. Upon interfacing with the patterns, the neural stem cells would firstly attach to the microwell sidewalls, forming cellular strips on day 1 after plating. For channel connected microwells, cellular strips on the concave semi-cylindrical sidewall surfaces continued among wells and through channels, followed by strip peeling due to prestress arising from actin filaments and assembly of suspending cellular aggregates within the microwells in the following 1–2 days. Our results also suggested that a small microwell diameter of 80 and 100 μm and a narrow channel width of 20 μm would facilitate the aggregate formation among the structural dimensions tested. Finite element method (FEM) simulation revealed that cellular strips on the semi-cylindrical sidewall surfaces peeled under significantly smaller prestresses (critical peeling prestress, CPP), than cells on flat substrates. However, the CPP by itself failed to fully account for the difference in aggregate inducing capability among the patterns addressed, suggesting cell growth behaviors might play a role. This study thus justified the current patterning method as a unique and practical approach for establishing 3D neural stem cell-based assay platform
  • Loading...
    Thumbnail Image
    Item
    Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on quasi-three-dimensional micropatterns formed with poly (l-lactic acid)
    (International Journal of Nanomedicine,, 2013) Wu, Ze-Zhi; Wang, Zheng-Wei; Zhang, Li-Guang; An, Zhi-Xing; Zhong, Dong-Huo; Huang, Qi-Ping; Luo, Mei-Rong; Liao, Yan-Jian; Jin, Liang; Li, Chen-Zhong; Kisaalita, William S.
    In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs).SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium Green™-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback