Browsing by Author "Yao, Nasser"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Diversity analysis and genomewide association studies of grain shape and eating quality traits in rice (Oryza sativa L.) using DArT markers(PLoS ONE, 2019) Mogga, Maurice; Sibiya, Julia; Shimelis, Hussein; Mbogo, Daniel; Muzhingi, Tawanda; Lamo, Jimmy; Yao, NasserMicroarray-based markers such as Diversity Arrays Technology (DArT) have become the genetic markers of choice for construction of high-density maps, quantitative trait loci (QTL) mapping and genetic diversity analysis based on their efficiency and low cost. More recently, the DArT technology was further developed in combination with high-throughput next-generation sequencing (NGS) technologies to generate the DArTseq platform representing a new sequencing tool of complexity-reduced representations. In this study, we used DArTseq markers to investigate genetic diversity and genome-wide association studies (GWAS) of grain quality traits in rice (Oryza sativa L.). The study was performed using 59 rice genotypes with 525 SNPs derived from DArTseq platform. Population structure analysis revealed only two distinct genetic clusters where genotypes were grouped based on environmental adaptation and pedigree information. Analysis of molecular variance indicated a low degree of differentiation among populations suggesting the need for broadening the genetic base of the current germplasm collection. GWAS revealed 22 significant associations between DArTseq-derived SNP markers and rice grain quality traits in the test genotypes. In general, 2 of the 22 significant associations were in chromosomal regions where the QTLs associated with the given traits had previously been reported, the other 20 significant SNP marker loci were indicative of the likelihood discovery of novel alleles associated with rice grain quality traits. DArTseq-derived SNP markers that include SNP12_100006178, SNP13_3052560 and SNP14_3057360 individually co-localised with two functional gene groups that were associated with QTLs for grain width and grain length to width ratio on chromosome 3, indicating trait dependency or pleiotropic-effect loci. This study demonstrated that DArTseq markers were useful genomic resources for genome-wide association studies of rice grain quality traits to accelerate varietal development and release.Item Genetic Diversity and Population Structure Analysis of Tropical Soybean (Glycine Max (L.) Merrill) using single Nucleotide Polymorphic Markers(Global Journal of Science Frontier Research, 2020) Obua, Tonny; Sserumaga, Julius P.; Opiyo, Stephen O.; Tukamuhabwa, Phinehas; Odong, Thomas L.; Mutuku, Josiah; Yao, NasserSoybean (Glycine max (L.) Merrill) is among the most important crops worldwide due to its numerous uses in feed, food, biofuel, and significant atmospheric nitrogen fixation capability. To understand the genetic diversity and population structure of tropical soybean germplasm, 89 genotypes from diverse sources were analyzed using 7,962 SNP markers. The AMOVA results showed low diversity among and high within the populations, while the polymorphism information content (PIC) was 0.27. Both phylogenetic and principal component analysis grouped the 89 soybean genotypes into three major clusters, while population structure grouped the soybean genotypes into two subpopulations. On the other, the average Roger genetic distances within the study population was 0.34. The low diversity reported in the studied soybean germplasm pool is particularly worrying, considering the new trends of climate change and the emergence of new pests and diseases of soybean. Therefore, in order to address these challenges and develop soybean varieties with desirable traits, there is a need to broaden the genetic base of tropical soybean through the importation of germplasm from other countries.Item Nutrient Profiling of Tropical Soybean (Glycine Max) Core Collection(Global Journal of Science Frontier Research, 2020) Obua, Tonny; Sserumaga, Julius P.; Nganga, Fredrick; Tukamuhabwa, Phineas; Odong, Thomas L.; Mutuku, Josiah; Yao, NasserSoybean (Glycine max (L.) Merrill) is a highly nutritious legume with enormous potential to improve dietary quality for humans and livestock. However, the development of varieties with improved nutritional traits has been affected by the negative correlation that exists among the different traits and the high cost of the phenotypic assessment. The objectives of this study were: (1) to quantify the total protein, total oil and fatty acids of 52 soybean genotypes from different sources, (2) to identify correlations among total protein, total oil content and fatty acids. The total protein content was determined using the Modified Folin-Lowry Method. In contrast, the total oil and fatty acids methyl esters were determined using the chloroform/methanol gravimetric method and Gas Chromatography–Mass Spectrometry. The analysis of variance revealed that the studied traits varied significantly depending on genotypes and origin.