Browsing by Author "Wydra, Kerstin D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Characterization of briquettes developed from banana peels, pineapple peels and water hyacinth(Research Square, 2022) Mibulo, Tadeo; Nsubuga, Denis; Kabenge, Isa; Wydra, Kerstin D.Uganda's energy needs are heavily reliant on biomass sources. This dependency of Uganda's burgeoning population on biomass for household and commercial purposes is posing pressure on natural resources such as forests. This study was carried out to investigate the utilization of some of the country's highly produced agricultural waste for the creation of biofuels. Methods: Pineapple peels, banana peels and water hyacinth were utilized for generation of both carbonized and uncarbonized briquettes. Physical properties and calorific values for the developed briquettes were determined through thermogravimetric analysis and using a bomb calorimeter. Results and conclusion: Pineapple peel carbonized briquettes had the highest calorific value (25.08 MJ/kg) followed by a composite of banana peels and pineapple peels (22.77 MJ/kg). The moisture content for briquettes ranged between 3.9 to 18.65%. Uncarbonized briquettes had higher volatile matter (ranging between 62.83 and 75.1%) than carbonized briquettes (ranging between 22.01 and 24.74%). Uncarbonized briquettes had shorter boiling time (ranging between 27 and 36 minutes for 2.5 liters) than carbonized briquettes (ranging between 26 and 41 minutes). Water hyacinth alone produced briquettes with low calorific values (16.22 MJ/kg), however, calorific values increased when mixed with banana (20.79 MJ/kg) or pineapple peels (20.55 MJ/kg). The findings reveal crucial information on how agricultural wastes might be used to augment the energy sources pool in order to protect the environment and creating social stability in the community.Item Potential of Jackfruit Waste as Anaerobic Digestion and Slow Pyrolysis Feedstock(Journal of Biosystems Engineering, 2021) Nsubuga, Denis; Banadda, Noble; Kabenge, Isa; Wydra, Kerstin D.The estimated annual worldwide production of jackfruit peelings (JP) and jackfruit seeds is 2.96 million tonnes. This study assesses the suitability of this jackfruit waste from soft and firm jackfruit varieties as potential feedstocks for anaerobic digestion and slow pyrolysis.Proximate, ultimate, calorific values, thermogravimetric, compositional and lignocellulosic analyses were conducted.The volatile matter, fixed carbon, hydrogen and carbon content of soft and firm jackfruit waste (peelings and seeds) ranged between 76.81 and 78.83%, 18.28 and 19.42%, 5.43 and 7.13% and 43.89 and 48.08%, respectively. The higher heating values (HHV) of soft and firm jackfruit waste ranged between 17.42 and 19.81 MJ/kg. The ash content of jackfruit waste from both varieties varied within the recommended range of less than 8%. The starch content of jackfruit peelings and seeds from both soft and firm varieties ranged between 29.05 and 59.54% while the sugar content of jackfruit peelings and seeds from soft and firm varieties ranged from 2.04 to 68.8%. The maximum weight degradation rate for the jackfruit waste for both jackfruit varieties occurred in the temperature range of 450–550 °C which is within the slow pyrolysis regime. Generally, cellulose formed the biggest proportions of the lignocellulosic composition followed by hemicellulose and lignin.Jackfruit waste from both soft and firm varieties is a potential feed stock for slow pyrolysis while soft variety jackfruit waste is more suitable for biogas production compared to the firm jackfruit wastes.Item Potential of Jackfruit Waste for Biogas, Briquettes and as a Carbondioxide Sink-A Review(Journal of Sustainable Developmen, 2020) Nsubuga, Denis; Banadda, Noble; Kabenge, Isa; Wydra, Kerstin D.One of the key aspects of a green economic development model of a country is to develop indigenous resources and local expertise while utilizing sustainable technologies. This review explored the possibilities of utilizing jackfruit waste for production of biogas, briquettes and biochar. In many of the developing countries, there is huge potential for organic waste conversion into appropriate energy solutions. These can contribute to developing rural areas especially small holder farmers and diversifying the available energy sources. Biomass waste like jackfruit waste when managed well can produce bio-energy, but also the GHG emissions need to be reduced from unmanaged, decomposing organic material. When put to use, agricultural biowastes like jackfruit waste could be used as raw materials in the production of bio-products (biofuels, biochar, bio pesticides), briquettes, among others. The biochar can be mixed with the soil producing carbon-rich soils and contribute to CO2 sequestration and soil fertility. This paper reviews works focused on using jackfruit waste for anaerobically producing of biogas, briquettes and biochar for improved crop production. The paper concluded that jackfruit waste can anaerobically decompose to produce biogas and it can also be used for briquette production. It was further concluded that jackfruit waste can undergo decomposition at high temperatures to produce biochar which can be incorporated into the soil creating a CO2 sink hence helping in mitigating the effects of the climate change.