Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wu, Pingping"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Perovskite-Type LaCoO 3 as an Efficient and Green Catalyst for Sustainable Partial Oxidation of Cyclohexane
    (Industrial & Engineering Chemistry Research, 2020) Muhumuza, Edgar; Wu, Pingping; Zhao, Lianming; Mintova, Svetlana
    Perovskite-type LaCoO3 catalysts were studied for cyclohexane oxidation with molecular oxygen in a solvent-free system. Catalysts with various Lanthanum to Cobalt molar ratios were prepared through a modified citric acid procedure and characterized by different techniques. Among all catalysts, the best cyclohexane conversion results (8.3%) with a K/A oil (cyclohexanone and cyclohexanol) selectivity of 90% were obtained over LaCoO3 with a La to Co molar ratio of 1:1. The high catalytic activity on the perovskite-type LaCoO3 catalyst was explored by experimental and theoretical methods. Density functional theory-based calculations clarified the role of La and Co ions in oxygen and cyclohexane adsorption, respectively. The characterization results indicated that a single-phase LaCoO3 perovskite with a dominance of surface Co3+ species and relatively high concentration of adsorbed oxygen species on the catalyst surface enhances the catalytic performance. This study presents insights into the design of a highly active, cost-effective, and green catalyst for cyclohexane partial oxidation.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback