Browsing by Author "Wasteson, Yngvild"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Diversity and Antimicrobial Resistance Genotypes in Non-Typhoidal Salmonella Isolates from Poultry Farms in Uganda(International journal of environmental research and public health, 2018) Odoch, Terence; Sekse, Camilla; L’Abee-Lund, Trine M.; Hansen, Helge Christoffer Høgberg; Kankya, Clovice; Wasteson, YngvildNon-typhoidal Salmonella (NTS) are foodborne pathogens of global public health significance. The aim of this study was to subtype a collection of 85 NTS originating from poultry farms in Uganda, and to evaluate a subgroup of phenotypically resistant isolates for common antimicrobial resistance genes and associated integrons. All isolates were subtyped by pulsed-field gel electrophoresis (PFGE). Phenotypically resistant isolates (n = 54) were screened by PCR for the most relevant AMR genes corresponding to their phenotypic resistance pattern, and all 54 isolates were screened by PCR for the presence of integron class 1 and 2 encoding genes. These genes are known to commonly encode resistance to ampicillin, tetracycline, ciprofloxacin, trimethoprim, sulfonamide and chloramphenicol. PFGE revealed 15 pulsotypes representing 11 serotypes from 75 isolates, as 10 were non-typable. Thirty one (57.4%) of the 54 resistant isolates carried at least one of the seven genes (blaTEM-1, cmlA, tetA, qnrS, sul1, dhfrI, dhfrVII) identified by PCR and six (11%) carried class 1 integrons. This study has shown that a diversity of NTS-clones are present in Ugandan poultry farm settings, while at the same time similar NTS-clones occur in different farms and areas. The presence of resistance genes to important antimicrobials used in human and veterinary medicine has been demonstrated, hence the need to strengthen strategies to combat antimicrobial resistance at all levels.Item Prevalence, antimicrobial susceptibility and risk factors associated with non-typhoidal Salmonella on Ugandan layer hen farms(BMC veterinary research, 2017) Odoch, Terence; Wasteson, Yngvild; L’Abée-Lund, Trine; Muwonge, Adrian; Kankya, Clovice; Nyakarahuka, Luke; Tegule, Sarah; Skjerve, EysteinNon-typhoidal Salmonella (NTS) are among the leading global foodborne pathogens and a significant public health threat. Their occurrence in animal reservoirs and their susceptibilities to commonly used antimicrobials are poorly understood in developing countries. The aim of this study was to estimate the prevalence, determine antimicrobial susceptibility and identify risk factors associated with NTS presence in laying hen farms in Uganda through a cross-sectional study. Results: Pooled faecal samples were collected from 237 laying hen farms and these were analysed for NTS following standard laboratory procedures. In total, 49 farms (20.7%; 95% Confidence interval (CI): 15.6–25.6%) were positive for NTS presence. Altogether, ten Salmonella serotypes were identified among the confirmed 78 isolates, and the predominant serotypes were Salmonella Newport (30.8%), S. Hadar (14.1%), S. Aberdeen (12.8%), S. Heidelberg (12.8%), and S. Bolton (12. 8%). Phenotypic antimicrobial resistance was detected in 45(57.7%) of the isolates and the highest resistance was against ciprofloxacin (50.0%) followed by sulphonamides (26.9%) and sulphamethoxazole/trimethoprim (7.7%). Resistance was significantly associated with sampled districts (p = 0.034). Resistance to three or more drugs, multi-drug resistance (MDR) was detected in 12 (15.4%) of the isolates, 9 (75%) of these were from Wakiso district. A multivariable logistic model identified large farm size (OR = 7.0; 95% CI: 2.5–19.8) and the presence of other animal species on the farm (OR = 5.9; 95% CI: 2.1–16.1) as risk factors for NTS prevalence on farms. Having a separate house for birds newly brought to the farms was found to be protective (OR = 0,4; 95% CI: 0.2–0.8). Conclusion: This study has highlighted a high prevalence and diversity of NTS species in laying hen farms in Uganda and identified associated risk factors. In addition, it has demonstrated high levels of antimicrobial resistance in isolates of NTS. This could be because of overuse or misuse of antimicrobials in poultry production. Also importantly, the insights provided in this study justifies a strong case for strengthening One Health practices and this will contribute to the development of NTS control strategies at local, national and international levels.