Browsing by Author "Waniale, Allan"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Application of Pollen Germination Media on Stigmas during Pollination Increases Seed Set in East African Highland Cooking Bananas (Musa spp.)(Agronomy, 2021) Waniale, Allan; Swennen, Rony; Settumba, B. Mukasa; Tugume, Arthur K.; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Amah, Delphine; Tumuhimbise, RobooniSeed set in East African Highland Cooking bananas (EAHBs) is extremely low and therefore hampers breeding. Pollen–pistil interaction is a key contributing factor. We assessed the effect of pollen germination media (PGM) on seed set in EAHBs. Five EAHB cultivars were pollinated with pollen from the wild banana ‘Calcutta 4’. Glucose-based PGM sprayed on freshly emerged stigmas significantly increased seed set per 100 fruits per bunch. Increases were 73.5% in ‘Enzirabahima’, 39.9% in ‘Mshale’, and 302.4% in ‘Nshonowa’. However, PGM did not increase seed set in the female sterile ‘Mlelembo’ and ‘Nakitembe’. As larger bunches were more fertile, good field management practices are also recommended to get more seed to improve breeding efficiency.Item Early Withering of Enlarged Ovules in Pollinated Fruits of Bananas (Musa spp.) Suggest Abortion after Fertilization(Horticulturae, 2022) Waniale, Allan; Mukasa, Settumba B.; Tugume, Arthur K.; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Tumuhimbise, RobooniSterility in edible bananas is as a result of a long history of anthropogenic-driven selection for sterile genotypes, since seed is not desirable in fruit pulp for human consumption. However, this poses a challenge to conventional genetic improvement by slowing breeding pipelines. In this study, we investigated whether pollen tubes reach all parts of the ovary, the position of fertilized ovule development in fruits, and potential seed set in selected banana genotypes. We selected four cultivars of East African Highland Cooking bananas (EAHBs), a Matooke hybrid ‘222K-1’, improved diploid ‘2905’, and wild bananas ‘Zebrina (G.F.)’ and ‘Calcutta 4’. There was evidence of pollen tubes in the distal, mid and proximal sections of the fruit, irrespective of hand position and genotype. Fertilization, as indicated by an increase in ovule size, happened along the entire length of the fruit but complete development was biased at the distal end in some genotypes. There were some differences in ovule fertilization rates between hands, with distal hands having more ovules and higher ovule fertilization rates. Ovule fertilization happens in bananas but the vast majority aborts, especially at the proximal end of the ovary. Ovule fertilization rates are generally much lower than available ovules.Item ‘NABIO808’ (Syn. ‘NAROBAN5’): A tasty cooking banana cultivar with resistance to pests and diseases(Crop Breeding and Applied Biotechnology, 2019) Tumuhimbise, Robooni; Buregyeya, Henry; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Barekye, Alex; Tendo, Reuben S.; Namagembe, Betty; Muhangi, Sedrach; Kazigye, Francis; Talengera, David; Tindamanyire, Jimmy; Akankwasa, Kenneth; Nabulya, Gertrude; Namaganda, Josephine; Waswa, William; Kushaba, Abias; Namuddu, Mary; Oyesigye, Naboth; Namanya, Priver; Arinaitwe, Ivan K.; Waniale, Allan; Karamura, Deborah; Karamura, Eldad‘NABIO808’ is a newly released, conventionally-bred triploid cooking banana cultivar in Uganda. It produces an average bunch yield of 54.5 t ha-1 yr-1 and is resistant to weevils, nematodes, and black Sigatoka. Additionally, its food is yellow, soft, and tasty, like that of most preferred landrace cultivars, making it more acceptable to end-users.Item Seed Set Patterns in East African Cooking Bananas (Musa spp.) are Dependent on Weather Before, During, and After Pollination(Research Square, 2020) Waniale, Allan; Mukasa, Settumba B.; Tugume, Arthur K.; Tumuhimbise, Robooni; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Swennen, RonySeed set in banana (Musa spp.) is influenced by weather but the most critical weather attribute(s) and the critical period are unknown. Such information is of paramount importance to increase seed set for banana breeding programs. Three female fertile East African cooking bananas (EACBs), ‘Enzirabahima’ (AAA), ‘Mshale’ (AA), and ‘Nshonowa’ (AA) were pollinated with the highly male fertile wild banana ‘Calcutta 4’ (AA). At full maturity, bunches were harvested and ripened and seeds extracted from ripe fruit pulp. Seed set was then correlated with weather before, during, and after pollination. Results: Seed set was positively correlated with high temperatures (r=0.172 – 0.488), solar radiation (r=0.181 – 0.282) and negatively correlated with rainfall (r=-0.214 – -0.238) and relative humidity (RH) (r=-0.158 – -0.438) between 75 and 15 days before pollination (DBP). The pattern of weather association was cultivar-dependent with ‘Nshonowa’ having the strongest significant associations. At the time of pollination, high average temperatures were critical for seed set in ‘Enzirabahima’ (r=0.214, P<0.01) while high morning RH was critical for ‘Mshale’ (r=0.299, P<0.01). After pollination, high morning temperatures were associated with seed set (r=0.150 – 0.429) between 15 days to 90 days after pollination (DAP). High average temperatures were negatively correlated with seed set in ‘Mshale’ and ‘Nshonowa’ from 45 DAP to time of harvest (r=-0.208 – -0.344). Coefficients of correlation were generally highest 15 DBP especially for ‘Mshale’ and ‘Nshonowa.’ Principle component analysis showed that average and maximum temperature are the most important variables in the entire data set. Conclusion: Coefficients of correlation were generally less than 0.5 partly as a result of weather involvement in seed set at several floral development stages; before, during, and after pollination. The most critical developmental stage is 15 DBP especially for ‘Mshale’ and ‘Nshonowa’ as they had the high correlation coefficients. Average temperature should be the main focus for seed set increase in banana.Item Seed Set Patterns in East African Cooking Bananas are Asymmetric in Bunches and Fruits(Research Square, 2020) Waniale, Allan; Mukasa, Settumba B.; Tugume, Arthur K.; Tumuhimbise, Robooni; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Swennen, RonyLow female fertility in bananas is the biggest hurdle for banana breeding. The aim of this study was to determine seed set patterns in East African cooking bananas EACBs to inform future decisions on a more targeted approach of increasing seed set and subsequently banana breeding efficiency. Matooke (AAA) and Mchare (AA) bananas are genetically distinct but belong to the same genetic complex, they referred to as EACBs. Seed set patterns in ‘Enzirabahima’ (AAA), ‘Mshale’ (AA) and ‘Nshonowa’ (AA) all with residual fertility were examined after hand pollination with a highly male fertile wild banana ‘Calcutta 4’ (AA). Results: Seed set in ‘Enzirabahima’ is predominant in distal hands. Mchare cultivars have a slightly more even distribution of seeds in their hands compared to ‘Enzirabahima.’ There is a gradual increase in seed set from proximal to distal hands with a slight drop in the last hand. This pattern is more definite in ‘Enzirabahima’ and ‘Mshale’ while ‘Nshonowa’ has a somewhat inconsistent pattern. There is also a drop in seed set per 100 fruits per hand from small to larger bunches. However, larger bunches have a higher pollination success compared to smaller bunches. They therefor set more seed on 100 fruits per hand and per bunch basis if bunches without seed are accounted for. Pollination success rate increases from smaller to larger bunches of EACBs. Seed set is biased toward the distal third part of fruits of examined EACBs as well tetraploid Matooke hybrid ‘401K-1’ (AAAA) and improved diploid ‘Zebrina’ GF (AA) that were used for comparison. In comparison, in the highly female fertile ‘Calcutta 4,’ seed set is along the entire length of the fruit. Conclusion: Seed set bias in the distal hands and distal end of fruits suggests a systematic mechanism rather than a random occurrence. It is expected that this information will provide a foundation for increased crossbreeding efficiency in bananas.Item Seed Set Patterns in East African Highland Cooking Bananas Are Dependent on Weather before, during and after Pollination(Horticulturae, 2021) Waniale, Allan; Swennen, Rony; Mukasa, Settumba B.; Tugume, Arthur K.; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Tumuhimbise, RobooniSeed set in banana is influenced by weather, yet the key weather attributes and the critical period of influence are unknown. We therefore investigated the influence of weather during floral development for a better perspective of seed set increase. Three East African highland cooking bananas (EAHBs) were pollinated with pollen fertile wild banana ‘Calcutta 40 . At full maturity, bunches were harvested, ripened, and seeds extracted from fruit pulp. Pearson’s correlation analysis was then conducted between seed set per 100 fruits per bunch and weather attributes at 15-day intervals from 105 days before pollination (DBP) to 120 days after pollination (DAP). Seed set was positively correlated with average temperature (P < 0.05–P < 0.001, r = 0.196–0.487) and negatively correlated with relative humidity (RH) (P < 0.05–P < 0.001, r = 0.158–0.438) between 75 DBP and the time of pollination. After pollination, average temperature was negatively correlated with seed set in ‘Mshale’ and ‘Nshonowa’ from 45 to 120 DAP (P < 0.05–P < 0.001, r = 0.213–0.340). Correlation coefficients were highest at 15 DBP for ‘Mshale’ and ‘Nshonowa’, whereas for ‘Enzirabahima’, the highest were at the time of pollination. Maximum temperature as revealed by principal component analysis at the time of pollination should be the main focus for seed set increase.Item Seed Set Patterns in East African Highland Cooking Bananas Show Asymmetric Distribution in Bunches and Fruits(Agronomy, 2021) Waniale, Allan; Swennen, Rony; Mukasa, Settumba B.; Tugume, Arthur K.; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Tumuhimbise, RobooniLow female fertility in bananas is the biggest hurdle for banana breeding. The aim of this study was to determine seed set patterns in East African Highland Cooking bananas (EAHBs) to inform future decisions on a more targeted approach of increasing seed set and subsequently banana-breeding efficiency. Matooke (AAA) and Mchare (AA) bananas are genetically distinct but belong to the same genetic complex, referred to as EAHBs. Seed set patterns in “Enzirabahima” (AAA), “Mshale” (AA), and “Nshonowa” (AA), all with residual fertility, were examined after hand pollination with a highly male fertile wild banana “Calcutta 4” (AA). Seed set in “Enzirabahima” is predominant in distal hands. Mchare cultivars have a slightly more even distribution of seeds in their hands compared to “Enzirabahima”. There is a gradual increase in seed set from proximal to distal hands with a slight drop in the last hand. This pattern is more definite in “Enzirabahima” and “Mshale”, while “Nshonowa” has a somewhat inconsistent pattern. There is also a drop in seed set per 100 fruits per hand from small to larger bunches. However, larger bunches have a higher pollination success compared to smaller bunches. They therefore set more seed on 100 fruits per hand and per bunch basis, if bunches without seed are accounted for. Pollination success rate increases from smaller to larger bunches of EAHBs. Seed set is biased toward the distal third part of fruits of examined EAHBs, as well as tetraploid Matooke hybrid “401K-1” (AAAA), and improved diploid “Zebrina” GF (AA) that were used for comparison. In comparison, in the highly female fertile “Calcutta 4”, seed set is along the entire length of the fruit. Seed set bias in the distal hands and distal end of fruits suggests a systematic mechanism rather than a random occurrence. It is expected that this information will provide a foundation for increased crossbreeding efficiency in bananas.Item Use of timelapse photography to determine flower opening time and pattern in banana (Musa spp.) for efficient hand pollination(Scientific Reports, 2021) Waniale, Allan; Swennen, Rony; Mukasa, Settumba B.; Tugume, Arthur K.; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Uwimana, Brigitte; Gram, Gil; Amah, Delphine; Tumuhimbise, RobooniSterility and low seed set in bananas is the main challenge to their conventional genetic improvement. The first step to seed set in a banana breeding program depends on pollination at the right time to ensure effective fertilization. This study aimed at determining bract opening time (BOT) to enhance efficient pollination and seed set in bananas. A Nikon D810 digital camera was set-up to take pictures of growing banana inflorescences at five-minute intervals and time-lapse movies were developed at a speed of 30 frames per second to allow real-time monitoring of BOT. Genotypes studied included wild banana (1), Mchare (2), Matooke (4), Matooke hybrid (1), and plantain (1). Events of bract opening initiated by bract lift for female flowers (P < 0.01) started at 16:32 h and at 18:54 h for male flowers. Start of bract rolling was at 18:51 h among female flowers (P < 0.001) and 20:48 h for male flowers. Bracts ended rolling at 02:33 h and 01:16 h for female and flowers respectively (P < 0.05). Total time of bract opening (from lift to end of rolling) for female flowers was significantly longer than that of male flowers (P < 0.001). On average, the number of bracts subtending female flowers opening increased from one on the first day, to between one and four on the fourth day. The number regressed to one bract on day eight before start of opening of bracts subtending male flowers. There was a longer opening interval between bracts subtending female and male flowers constituting spatial and temporal separation. Bract rolling increased from partial to complete rolling from proximal to the distal end of the inflorescence among female flower. On the other hand, bracts subtending male flowers completely rolled. Differences in BOT of genotypes with the same reference time of assessment may be partly responsible for variable fertility. Hand pollination time between 07:00 and 10:00 h is slightly late thus an early feasible time should be tried.