Browsing by Author "Wang, Lina"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Administration of BDNF/ginsenosides combination enhanced synaptic development in human neural stem cell(Journal of neuroscience methods, 2011) Wang, Lina; Kisaalita, William S.Ginsenosides Rg1 and Rb1, major pharmacologically active ingredients from Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), were applied in the differentiation media for human neural stem cells (hNSCs), together with brain-derived neurotrophic factor (BDNF), a commonly used compound for neural stem cell (NSC) differentiation. Cell locomotion and neurite extension were observed by time-lapse microscopy and analyzed by ImageJ software. The expression of synaptic formation was confirmed by immunostaining of synaptophysin (SYN) or/and the co-localization of synapsin I and microtubule associated protein-2 (MAP-2). Effects of cell density on neural differentiation were also examined. Results have shown that administration of BDNF/ginsenosides (Rg1 and Rb1) combination in differentiation medium promoted cell survival, enhanced neurite outgrowth and synaptic marker expression during differentiation. High cell density enhanced synaptic marker expression in BDNF/ginsenosides combination medium. In all, this study established a condition for hNSCs synaptic development in early differentiation, which is a crucial step in applying this cell line in neural network-based assay.Item Characterization of micropatterned nanofibrous scaffolds for neural network activity readout for high-throughput screening(Applied Biomaterials, 2010) Wang, Lina; Kisaalita, William S.Micropatterns were fabricated in nanofibrous poly‐L‐lactic acid (PLLA) films by laser micromachining and the resulting scaffolds were characterized with respect to architecture, thermal, mechanical, and mass transport properties. Also, human neural stem cells were successfully cultured in these micropatterned nanofibrous scaffolds (MNFSs). The scaffolds were incorporated in high‐density well plates (e.g., 96‐well plates), creating a platform for high‐throughput screening of drugs with physiologically more relevant networked neural cultures. Through mathematical modeling of the transport of model stimulants, the feasibility of stimulating neural networks cultured in MNFSs was demonstrated. More work is needed to establish biological network activity–MNFS architecture relationships. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.Item Effects of Topography on the Functional Development of Human Neural Progenitor Cells(Biotechnology and bioengineering, 2010) Wu, Ze-Zhi; Kisaalita, William S.; Wang, Lina; Zachman, Angela L.; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L.We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell‐based assay systems targeting voltage‐gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (Vm) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub‐micrometer (of 0.51 µm in mean diameter) and micrometer (of 1.98 µm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative Vm values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K+ depolarization with an increase in [Ca2+]i either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery. Biotechnol. Bioeng. 2010;106: 649–659. © 2010 Wiley Periodicals, Inc.Item Microstructured Topography Enhanced the Responsiveness of Voltage-gated Calcium Channels in H945RB.3 Human Neural Progenitor Cells(International Conference on Bioinformatics and Biomedical Engineering, 2009) Wu, Ze-Zhi; Kisaalita, William S.; Wang, Lina; Zhao, YipingA topographical substrate with a packed polystyrene microbead (1.98 plusmn 0.20 mum in diameter) array was fabricated for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). We found that the microbead arrayed substrates enhanced the attachment and spreading of the cultured human neural progenitor cells (H945RB.3) as compared to the flat polystyrene surfaces. Microbead arrayed substrates also facilitated the development of higher VGCC responsiveness upon neuronal differentiation than flat substrates. The enhancement of both VGCC responsiveness and cell spreading were most significant until day 14 into differentiation.Item SU-8 microstructure for quasi-three-dimensional cell-based biosensing(Sensors and Actuators B: Chemical, 2009) Wang, Lina; Wu, Ze-Zhi; Xub, Bingqian; Zhaoc, Yiping; Kisaalita, William S.A quasi-three-dimensional (quasi-3-D) cell-based biosensor platform microfabricated from SU-8 has been developed and characterized. In this work, SH-SY5Y human neuroblastoma cells were integrated with SU-8 microfabricated microwells with diameters of 100μm. SH-SY5Y cells were differentiated with 1mM dibutyryl cAMP and 2.5μM 5-bromodeoxyuridine. Voltage-gated calcium channel (VGCC) function of SH-SY5Y cells cultured within the microwells (quasi-3-D) versus those cultured on the SU-8 planar substrates (2-D) was evaluated by confocal microscopy with a calcium fluorescent indicator, Calcium Green-1. In response to 50mM high K+ depolarization, cells in microwells were less responsive in terms of increase in intracellular Ca2+ in comparison to cells on 2-D substrates. This study shows that VGCC function of cells within SU-8 microwells was indeed different from that of cells on planar SU-8 surfaces, suggesting that SU-8 microstructure did affect SH-SY5Y cell differentiation with respect to VGCC function and that high-aspect-ratio microstructures are not merely “folded” 2-D structures. Furthermore, these results are consistent with previous 2-D/3-D comparative studies carried out in polymer scaffolds and support the hypothesis that cell calcium dynamics on 2-D substrates may be exaggerated. Overall, this work is supportive of SU-8 micropattern as a viable platform for engineering a quasi-3-D cell culture system for cell-based biosensing against drugs for VGCCs.