Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "VanderWaal, Kimberly"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Molecular Detection and Phylogenetic Analysis of Lumpy Skin Disease Virus from Outbreaks in Uganda 2017–2018
    (BMC veterinary research, 2020) Ochwo, Sylvester; VanderWaal, Kimberly; Ndekezi, Christian; Nkamwesiga, Joseph; Munsey, Anna; Witto, Sarah Gift; Nantima, Noelina; Mayanja, Franklin; Okurut, Anna Rose Ademun; Atuhaire, David Kalenzi
    Lumpy skin disease (LSD) is an infectious viral disease of cattle caused by a Capripoxvirus. LSD has substantial economic implications, with infection resulting in permanent damage to the skin of affected animals which lowers their commercial value. In Uganda, LSD is endemic and cases of the disease are frequently reported to government authorities. This study was undertaken to molecularly characterize lumpy skin disease virus (LSDV) strains that have been circulating in Uganda between 2017 and 2018. Secondly, the study aimed to determine the phylogenetic relatedness of Ugandan LSDV sequences with published sequences, available in GenBank.A total of 7 blood samples and 16 skin nodule biopsies were screened for LSDV using PCR to confirm presence of LSDV nucleic acids. PCR positive samples were then characterised by amplifying the GPCR gene. These amplified genes were sequenced and phylogenetic trees were constructed. Out of the 23 samples analysed, 15 were positive for LSDV by PCR (65.2%). The LSDV GPCR sequences analysed contained the unique signatures of LSDV (A11, T12, T34, S99, and P199) which further confirmed their identity. Sequence comparison with vaccine strains revealed a 12 bp deletion unique to Ugandan outbreak strains. Phylogenetic analysis indicated that the LSDV sequences from this study clustered closely with sequences from neighboring East African countries and with LSDV strains from recent outbreaks in Europe. It was noted that the sequence diversity amongst LSDV strains from Africa was higher than diversity from Eurasia.The LSDV strains circulating in Uganda were closely related with sequences from neighboring African countries and from Eurasia. Comparison of the GPCR gene showed that outbreak strains differed from vaccine strains. This information is necessary to understand LSDV molecular epidemiology and to contribute knowledge towards the development of control strategies by the Government of Uganda.
  • Loading...
    Thumbnail Image
    Item
    Spatial distribution and risk factors for foot and mouth disease virus in Uganda: Opportunities for strategic surveillance
    (Preventive veterinary medicine, 2019) Munsey, Anna; Mwiine, Frank Norbert; Ochwo, Sylvester; Salinas, Lauro Velazquez; Ahmed, Zaheer; Maree, Francois; Rodriguez, Luis L.; Rieder, Elizabeth; Perez, Andres; VanderWaal, Kimberly
    Foot-and-mouth disease virus (FMDV) has a substantial impact on cattle populations in Uganda, causing short- and long-term production losses and hampering local and international trade. Although FMDV has persisted in Uganda for at least 60 years, its epidemiology there and in other endemic settings remains poorly understood. Here, we utilized a large-scale cross-sectional study of cattle to elucidate the dynamics of FMDV spread in Uganda. Sera samples (n = 14,439) from 211 herds were analyzed for non-structural protein reactivity, an indication of past FMDV exposure. Serological results were used to determine spatial patterns, and a Bayesian multivariable logistic regression mixed model was used to identify risk factors for FMDV infection. Spatial clustering of the disease was evident, with higher risk demonstrated near international borders. Additionally, high cattle density, low annual rainfall, and pastoralism were associated with increased likelihood of FMD seropositivity. These results provide insights into the complex epidemiology of FMDV in Uganda and will help inform refined control strategies in Uganda and other FMDV-endemic settings.
  • Loading...
    Thumbnail Image
    Item
    Spatio-temporal Epidemiology of Anthrax in Hippopotamus Amphibious in Queen Elizabeth Protected Area, Uganda
    (PLoS One, 2018) Driciru, Margaret; Rwego, Innocent B.; Asiimwe, Benon; Travis, Dominic A.; Alvarez, Julio; VanderWaal, Kimberly; Pelican, Katharine
    Anthrax is a zoonotic disease primarily of herbivores, caused by Bacillus anthracis, a bacterium with diverse geographical and global distribution. Globally, livestock outbreaks have declined but in Africa significant outbreaks continue to occur with most countries still categorized as enzootic, hyper endemic or sporadic. Uganda experiences sporadic human and livestock cases. Severe large-scale outbreaks occur periodically in hippos (Hippopotamus amphibious) at Queen Elizabeth Protected Area, where in 2004/2005 and 2010 anthrax killed 437 hippos. Ecological drivers of these outbreaks and potential of hippos to maintain anthrax in the ecosystem remain unknown. This study aimed to describe spatio-temporal patterns of anthrax among hippos; examine significant trends associated with case distributions; and generate hypotheses for investigation of ecological drivers of anthrax.Spatio-temporal patterns of 317 hippo cases in 2004/5 and 137 in 2010 were analyzed. QGIS was used to examine case distributions; Spearman’s nonparametric tests to determine correlations between cases and at-risk hippo populations; permutation models of the spatial scan statistics to examine spatio-temporal clustering of cases; directional tests to determine directionality in epidemic movements; and standard epidemic curves to determine patterns of epidemic propagation.Results showed hippopotamus cases extensively distributed along water shorelines with strong positive correlations (p<0.01) between cases and at-risk populations. Significant (p<0.001) spatio-temporal clustering of cases occurred throughout the epidemics, pointing towards a defined source. Significant directional epidemic spread was detected along water flow gradient (206.6°) in 2004/5 and against flow gradient (20.4°) in 2010. Temporal distributions showed clustered pulsed epidemic waves.These findings suggest mixed point-source propagated pattern of epidemic spread amongst hippos and points to likelihood of indirect spread of anthrax spores between hippos mediated by their social behaviour, forces of water flow, and persistent presence of infectious carcasses amidst schools. This information sheds light on the epidemiology of anthrax in highly social wildlife, can help drive insight into disease control, wildlife conservation, and tourism management, but highlights the need for analytical and longitudinal studies aimed at clarifying the hypotheses.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback