Browsing by Author "Ukuli, Qouilazoni Aquino"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Molecular detection of Coxiella burnetii in ticks collected from animals and the environment in Uganda(Zoonoses and Public Health, 2024) Eneku, Wilfred; Erima, Bernard; Maranda Byaruhanga, Anatoli; Nora, Cleary; Atim, Gladys; Tugume, Titus; Ukuli, Qouilazoni Aquino; Kibuuka, Hannah; Mworozi, Edison; Tweyongyere, Robert; Christina, E. Douglas; Jeffrey, W. Koehler; Michael, E. von Fricken; Wabwire-Mangen, Fred; Byarugaba, Denis K.Aims Coxiella burnetii is a highly infectious organism that is easily spread through aerosols causing Q fever in humans. Ticks can harbour and transmit C. burnetii to animals, contributing to disease maintenance. Our aim was to examine the presence of C. burnetii in ticks in Uganda. Methods and Results In this study, ticks were collected from five Ugandan districts and tested by real-time PCR for C. burnetii (Coxiella outer membrane protein 1 gene). A total of 859 tick pools (9602 individual ticks) were tested, and pool positivity for C. burnetii was 5.5% (n = 47). Pooled prevalence differed by district; the highest was Luwero (7.3%), then Gulu (6.6%), and Kasese had the lowest (1.3%). However, district variation was not statistically significant (Fisher's exact = 0.07). Ticks collected from dogs and cats had the highest positivity rates [23/47, (48.9%)] followed by livestock (cattle, goats, sheep, and pigs) [18/47, (38.3%)] and vegetation [6/47, (12.8%)]. Haemaphysalis elliptica had the highest infection rates, followed by Rhipicephalus appendiculatus, Amblyomma variegatum and Rhipicephalus decoloratus had similar prevalence. Conclusions Although ticks are not the primary transmitters of C. burnetii to humans, pathogen detection in ticks can be an indirect indicator of risk among animal hosts. Vulnerable populations, including occupations with close animal contact such as farming, butchery, and veterinary practice, have an increased risk of C. burnetii exposure. Veterinarians and clinicians should be aware that C. burnetii may cause human and animal illness in these regions.Item Seroprevalence of Q-fever, spotted fever, typhus group Rickettsia and Orientia among febrile patients visiting hospital-based sentinel sites in Uganda(PAMJ - One Health, 2023) Eneku, Wilfred; Erima, Bernard; Byaruhanga, Anatoli Maranda; Nora, Gillian Cleary; Atim, Gladys; Tugume, Titus; Ukuli, Qouilazoni Aquino; Kibuuka, Hannah; Mworozi, Edison; Christina, Douglas; Jeffrey, William Koehler; Michael, Emery von Fricken; Biryomumaisho, Savino; Tweyongyere, Robert; Wabwire-Mangen, Fred; Byarugaba, Denis KaruhizeIntroduction: rickettsioses are emerging zoonotic febrile illnesses transmitted to humans by ticks, fleas, lice, and mites. Q-fever, Spotted fever group (SFG), Typhus group (TG) rickettsia and Scrub typhus (STG) have been reported with varying prevalence across East Africa. However, little is known about the burden of exposure in Uganda. The aim of this study was to determine the seroprevalence and associated risk factors of rickettsial diseases in Uganda. Methods: a total of 460 archived serum samples collected from patients with fever of unknown origin after screening across five hospital-based sentinel sites were analysed. The samples were collected during 18-month period of active surveillance for acute febrile illnesses, from January 2018 through June 2019. We performed IgM ELISA tests on the 460 sera for SFG and TG rickettsia, IgM IFA for STG and Phase 2 IgG ELISA for Q-fever. We also assessed risk factors associated with the serostatus. Results: the population comprised predominantly children, had balanced gender proportions, with 66% coming from rural areas. The overall seroprevalence of SFG rickettsiosis was 6.3%; however, 11.5% and 10.8% prevalence rates were observed in Gulu and Bwera hospitals respectively. This was higher than the 3.7% observed in the capital city Kampala, although the differences were not statistically significant (Fisher's exact = 0.489). Overall seropositivity of Q-fever was 7.6%, although Bwera Hospital had the highest rate (12.5%) and Mulago had the lowest rate (2%). The differences were not considered statistically significant (Fishers exact= 0.075). Increasing age (OR-adjusted=1.4, 95%CI=1.0-1.9, p=0.026) and rural background (OR-adjusted=2.6, 95%CI=1.6- 6.4, p=0.037) were both significantly associated with seropositivity for Q-fever, while only increasing age had higher odds for seropositivity for SFG rickettsia (OR-adjusted= 1.9, 95% CI= 1.4- 2.6, p<0.001). One serum sample of a 10-monthold male from Bwera hospital was reactive to both SFG and Q-fever antibodies. We found four sera reactive cases to typhus group IgM and another four reactive to Orientia spp. IgM. However, we were not able to determine associating factors due to low seropositivity rates. Conclusion: here, we report for the first time the seroprevalence of Qfever, SFG and STG in febrile patients in Uganda. This report also provides the second study in over five decades since the earliest report of TG rickettsia. Testing for these pathogens in patients with acute febrile illness with unknown etiology may hold value, however more studies are required to provide information on disease ecology, risk factors, and transmission dynamics of these pathogens in Uganda.