Browsing by Author "Tusubira, Jeremy Francis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A dataset of cassava whitefly count images(Data in Brief, 2022) Nakatumba-Nabende, Joyce; Tusubira, Jeremy Francis; Babirye, Claire; Nsumba, Solomon; Omongo Abu, ChristopherWhiteflies are insect vectors that affect a variety of plants such as tomatoes, cabbages, sweet potatoes, eggplants, and cassava. In Uganda, whiteflies are a major contributor to the spread of Cassava Brown Streak Disease (CBSD). By suckling on infected cassava plants, whiteflies can potentially transfer the Cassava Brown Streak Virus that causes CBSD to unin- fected clean plants nearby when they migrate. When they attack the cassava plants in large numbers, whiteflies can also cause significant physical damage through suckling. This eventually can lead to leaf loss or plant death. Whiteflies also excrete “honeydew”, which harbors a fungus known as “sooty mold”that covers the leaves, limiting access to sun- light which in turn affects plant food production. As part of their work, the cassava breeders often conduct studies to as- sess the population of whiteflies in cassava fields through a manual process of visual inspection which can be arduous and time-consuming. This paper presents a cassava whitefly dataset that has been curated to enable researchers to build solutions for the automation of the count and detection of whiteflies. The dataset contains 3,0 0 0 images captured in a whitefly trial site in Uganda. It depicts different variations of whitefly infestation from low to high infestation. This data has already been used to provide a proof-of-concept solution for whitefly counting based on Machine Learning approaches.Item A dataset of necrotized cassava root cross-section images(Data in brief, 2020) Nakatumba-Nabende, Joyce; Akera, Benjamin; Tusubira, Jeremy Francis; Nsumba, Solomon; Mwebaze, ErnestCassava brown streak disease is a major disease affecting cas- sava. Along with foliar chlorosis and stem lesions, a very common symptom of cassava brown streak disease is the development of a dry, brown corky rot within the starch bearing tuberous roots, also known as necrosis. This paper presents a dataset of curated image data of necrosis bearing roots across different cassava varieties. The dataset contains images of cassava root cross-sections based on trial harvests from Uganda and Tanzania. The images were taken using a smartphone camera. The resulting dataset consists of 10,052 images making this the largest publicly available dataset for crop root necrosis. The data is comprehensive and contains different variations of necrosis expression including root cross-section types, number of necrosis lesions, presentation of the necrosis le- sions. The dataset is important and can be used to train ma- chine learning models which quantify the percentage of cas- sava root damage caused by necrosis.Item Predicting Sweepotato Sensory Attributes Using DigiEye and Image Analysis as a Breeding Tool(RTBfoods, 2022) Nakatumba-Nabende, Joyce; Nabiryo, Ann Lisa; Babirye, Claire; Tusubira, Jeremy Francis; Katumba, Andrew; Murindanyi, Sudi; Mutegeki, Henry; Nantongo, Judith; Sserunkuma, Edwin; Nakitto, Mariam; Ssali, Reuben; Davrieux, FabriceThe objective of the work was to develop, test and evaluate a color and mealiness classification model based on images of sweetpotato roots. A total of 3018 images were collected from 950 samples from October 2021 to November 2022. The captured image data samples were harvested from several sites, including Namulonge, Arua, Bulindi, Nassari, Serere, Rwebitaba, Iganga, Kabarole, Mbale, Mpigi, Busia, Kamuli, Hoima, Kabale and Kenya. Calibrations were done using reference data collected by a sensory panel. Up to twelve cooked roots per genotype were used for sensory evaluation of traits per session. Calibrations used various linear and non-linear models. Using linear regression, high performances were observed of the calibration for orange color intensity (R2 = 0.92, Mean Squared Error (MSE) =0.58), suggesting that the model is sufficient for field application. For mealiness-by-hand and positive area, the best model has a Mean Absolute Error (MAE) of 2.16 and 9.01 respectivelyItem Scoring Root Necrosis in Cassava Using Semantic Segmentation(arXiv preprint arXiv, 2020) Tusubira, Jeremy Francis; Akera, Benjamin; Nsumba, Solomon; Nakatumba-Nabende, Joyce; Mwebaze, ErnestCassava a major food crop in many parts of Africa, has ma- jorly been a ected by Cassava Brown Streak Disease (CBSD). The dis- ease a ects tuberous roots and presents symptoms that include a yel- low/brown, dry, corky necrosis within the starch-bearing tissues. Cassava breeders currently depend on visual inspection to score necrosis in roots based on a qualitative score which is quite subjective. In this paper we present an approach to automate root necrosis scoring using deep convo- lutional neural networks with semantic segmentation. Our experiments show that the UNet model performs this task with high accuracy achiev- ing a mean Intersection over Union (IoU) of 0.90 on the test set. This method provides a means to use a quantitative measure for necrosis scor- ing on root cross-sections. This is done by segmentation and classifying the necrotized and non-necrotized pixels of cassava root cross-sections without any additional feature engineering.