Browsing by Author "Tshilidzi, Marwala"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Classification of Images Using Support Vector Machines(arXiv preprint arXiv, 2007) Gidudu, Anthony; Hulley, Greg; Tshilidzi, MarwalaSupport Vector Machines (SVMs) are a relatively new supervised classification technique to the land cover mapping community. They have their roots in Statistical Learning Theory and have gained prominence because they are robust, accurate and are effective even when using a small training sample. By their nature SVMs are essentially binary classifiers, however, they can be adopted to handle the multiple classification tasks common in remote sensing studies. The two approaches commonly used are the One-Against-One (1A1) and One- Against-All (1AA) techniques. In this paper, these approaches are evaluated in as far as their impact and implication for land cover mapping. The main finding from this research is that whereas the 1AA technique is more predisposed to yielding unclassified and mixed pixels, the resulting classification accuracy is not significantly different from 1A1 approach. It is the authors conclusions that ultimately the choice of technique adopted boils down to personal preference and the uniqueness of the dataset at hand.Item An SVM Multiclassifier Approach to Land Cover Mapping(ASPRS, 2020) Gidudu, Anthony; Gregg, Hulley; Tshilidzi, MarwalaFrom the advent of the application of satellite imagery to land cover mapping, one of the growing areas of research interest has been in the area of image classification. Image classifiers are algorithms used to extract land cover information from satellite imagery. Most of the initial research has focussed on the development and application of algorithms to better existing and emerging classifiers. In this paper, a paradigm shift is proposed whereby a ‘committee’ of classifiers is used to determine the final classification output. Two of the key components of an ensemble system are that there should be diversity among the classifiers and that there should be a mechanism through which the results are combined. In this paper, the members of the ensemble system include: Linear SVM, Gaussian (Radial Basis Function) SVM and Quadratic SVM. The final output was determined through a simple majority vote of the individual classifiers. From the results obtained it was observed that the final derived map generated by an ensemble system can potentially improve on the results derived from the individual classifiers making up the ensemble system. The ensemble system classification accuracy was, in this case, better than the linear and quadratic SVM result. It was however less than that of the RBF SVM. Areas for further research could focus on improving the diversity of the ensemble system used in this research.