Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tran-Thi-Thu, Trang"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    QSRR Prediction of Gas Chromatography Retention Indices of Essential Oil Components
    (Chemical Papers, 2018) Marrero-Ponce, Yovani; Barigye, Stephen J.; Jorge-Rodrı´guez, Marı´a E.; Tran-Thi-Thu, Trang
    A comprehensive and largest (to the best of our knowledge) database of 791 essential oil components (EOCs) with corresponding gas chromatographic retention properties has been built. With this data set, Quantitative structure–retention relationship (QSRR) models for the prediction of the Kováts retention indices (RIs) on the non-polar DB-5 stationary phase have been built using the DRAGON molecular descriptors and the regression methods: multiple linear regression (MLR) and artificial neural networks (ANN). The obtained models demonstrate good performance, evidenced by the satisfactory statistical parameters for the best MLR (R 2 = 96.75% and Q2ext = 98.0%) and ANN (R 2 = 97.18% and Q2ext = 98.4%) models, respectively. In addition, the built models provide information on the factors that influence the retention of EOCs over the DB-5 stationary phase. Comparisons of the statistical parameters for the QSRR models in the present study with those reported in the literature demonstrate comparable to superior performance for the former. The obtained models constitute valuable tools for the prediction of RIs for new EOCs whose experimental data are undetermined.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback