Browsing by Author "Tamale, Joseph"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Nutrient limitations regulate soil greenhouse gas fluxes from tropical forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda(Soil, 2021) Tamale, Joseph; Hüppi, Roman; Griepentrog, Marco; Turyagyenda, Laban Frank; Doetterl, Sebastian; Straaten, Oliver vanSoil macronutrient availability is one of the abiotic controls that alters the exchange of greenhouse gases (GHGs) between the soil and the atmosphere in tropical forests. However, evidence on the macronutrient regulation of soil GHG fluxes from central African tropical forests is still lacking, limiting our understanding of how these biomes could respond to potential future increases in nitrogen (N) and phosphorus (P) deposition. The aim of this study was to disentangle the regulation effect of soil nutrients on soil GHG fluxes from a Ugandan tropical forest reserve in the context of increasing N and P deposition. Therefore, a large-scale nutrient manipulation experiment (NME), based on 40 m×40 m plots with different nutrient addition treatments (N, P, N + P, and control), was established in the Budongo Central Forest Reserve. Soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes were measured monthly, using permanently installed static chambers, for 14 months. Total soil CO2 fluxes were partitioned into autotrophic and heterotrophic components through a root trenching treatment. In addition, soil temperature, soil water content, and nitrates were measured in parallel to GHG fluxes. N addition (N and N + P) resulted in significantly higher N2O fluxes in the transitory phase (0–28 d after fertilization; p<0.01) because N fertilization likely increased soil N beyond the microbial immobilization and plant nutritional demands, leaving the excess to be nitrified or denitrified. Prolonged N fertilization, however, did not elicit a significant response in background (measured more than 28 d after fertilization) N2O fluxes. P fertilization marginally and significantly increased transitory (p=0.05) and background (p=0.01) CH4 consumption, probably because it enhanced methanotrophic activity. The addition of N and P (N + P) resulted in larger CO2 fluxes in the transitory phase (p=0.01), suggesting a possible co-limitation of both N and P on soil respiration. Heterotrophic (microbial) CO2 effluxes were significantly higher than the autotrophic (root) CO2 effluxes (p<0.01) across all treatment plots, with microbes contributing about two-thirds of the total soil CO2 effluxes. However, neither heterotrophic nor autotrophic respiration significantly differed between treatments. The results from this study suggest that the feedback of tropical forests to the global soil GHG budget could be disproportionately altered by increases in N and P availability over these biomes.Item Soil greenhouse gas fluxes following tropical deforestation for fertilizer-intensive sugarcane cultivation in northwestern Uganda(EGU General Assembly, 2022) Tamale, Joseph; van Straaten, Oliver; Hüppi, Roman; Turyagyenda, Laban Frank; Doetter, SebastianDeforestation followed by fertilizer intensive agriculture is widely recognized as a significant contributor to anthropogenic greenhouse gas emissions (GHG), particularly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). However, empirical studies focusing on soil GHG flux dynamics from deforestation hotspots in the tropics are still limited creating major uncertainties for constraining global GHG budgets. In this study, we investigated how deforestation for fertilizer intensive sugarcane cultivation in Uganda affects soil-borne GHGs. Therefore, soil GHG fluxes were measured in a primary forest and in a completely randomized experiment premised in the neighboring sugarcane fields with different fertilizer regimes, representing both smallholder and industrial-scale sugarcane farm management. Despite the use of different fertilization rates (low, standard, and high) as treatments for the sugarcane CRD experiment, neither auxiliary controls nor soil GHG fluxes significantly differed among the CRD treatments. Soil respiration was higher in the sugarcane than in the forest, which we attribute to the increased autotrophic respiration from the sugarcane's fine root biomass and the likely exposure of the sugarcane's larger soil organic carbon stocks to microbial decomposition through ploughing operations. The forest soils were a stronger net sink of CH4 than the sugarcane soils despite forest soils having both higher bulk densities and larger water-filled pore space (WFPS), and we suspect that this was due to alteration of the methanotroph abundance upon the conversion. Soil N2O emissions were smaller in the sugarcane than in the forest, which was surprising, but most likely resulted from the excess N being lost either through leaching or uptake by the sugarcane crop. Only seasonal variability in WFPS, among the auxiliary controls, affected CH4 uptake at both sites and soil CO2 effluxes in the sugarcane. Noteworthy, soil N2O fluxes from both sites were unaltered by the seasonality-mediated changes in auxiliary controls. All the findings put together suggest that forest conversion for sugarcane cultivation alters soil GHG fluxes by increasing soil CO2 emissions and reducing both soil CH4 sink strength and soil N2O emissions.